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ABSTRACT
We present a predictive modelling approach to estimate monthly forced displacement outflows at a 0.5-degree 
grid-cell resolution across 25 African countries using data from UNHCR’s own refugee registration records. The 
refugee records were spatially gridded on a consistent 0.5-degree grid-scale and combined with environmental, 
conflict, demographic, and socio-economic covariates at the same resolution to create a comprehensive dataset 
of displacement drivers with climate as a specific focus. The target variable presents significant statistical 
challenges due to excess zeros, and infrequent, short-lived spikes with large displacement counts. These 
challenging characteristics required the implementation of multiple classification algorithms for prediction.  
Count patterns were analysed using tree-based models (lightGBM), convolutional neural networks (CNN), and 
ConvLSTM architectures to handle spatial-temporal dependencies in the data. Results show good predictive 
performance for low and medium counts, but difficulties in detecting large and acute displacement spikes.
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Introduction
Climate change is increasingly recognized as a 
significant driver of forced displacement, operating 
through its effects on conflict, economic shocks, 
and food insecurity. As climate impacts intensify, 
understanding and predicting climate-driven 
displacement becomes essential to anticipate future 
population displacements and enable more effective 
humanitarian preparedness. 

Early approaches to climate-driven displacement 
prediction relied on simplistic assumptions about 
linear cause-and-effect relationships between 
climate hazards and population movements, often 
focusing on mapping out hazards and assuming 
complete displacement from affected areas without 
taking adaptation measures into account. These 
theoretical approaches generated broad, often 
catastrophic, projections of future climate driven 
mobility, but lacked the rigor and timeliness needed for 
humanitarian planning. More recent research focused 
on understanding how climate impacts intersect with 
existing mobility systems, and affect the nature, volume 
and direction of displacement flows. (see Schewel et 
al., 2024, for an overview). In this context, recognizing 
that climate change acts indirectly on pre-existing 
migration systems, and is often not the proximate 
cause for migration, researchers incorporate climate-
related indicators into migration and population models 
to forecast climate-driven mobility. 

However, several limitations characterizing the 
field of climate-related displacement forecasting 
remain, many of them related to data availability. 
In particular, a lack of data on non-climate related 
drivers of displacement such as social, political, and 
economic factors, and insufficient frequency and 
geographical disaggregation of displacement flows 
data may hamper the understanding of the localized 
mechanisms through which climate impacts actually 
operate. Environmental stressors interact with local 
conflict dynamics, economic conditions, and social 
vulnerabilities in spatially heterogeneous ways that 
national averages fail to capture adequately. Without 
detecting climate-displacement relationships at the 
scales where they operate, we may miss important 
signals of environmentally influenced displacement. 

This gap limits opportunities for early intervention and 
anticipatory resource allocation, perpetuating reactive 
humanitarian responses. 

We attempt to address this gap by developing a 
grid-based displacement forecasting framework 
that operates at the more granular spatial scale. 
Our approach combines high-resolution gridded 
displacement data from UNHCR’s internal registration 
database with advanced deep learning architectures 
to predict forced displacement outflows at 0.5-degree 
resolution across 25 Sub-Saharan African countries. 
Building on insights from O’Loughlin et al. (2012), who 
demonstrate that climate-conflict relationships only 
becomes statistically detectable at fine spatial scales, 
we apply this principle to displacement forecasting. 
Since most forced displacement is conflict-driven 
and climate-conflict links seem to operate mainly at 
localized scales, displacement forecasting requires 
similar spatial granularity to capture the environmental 
drivers of population movements. 

Our methodology integrates spatial-temporal 
modelling through tree-based models (lightGBM), 
convolutional neural networks, and ConvLSTM 
architectures to handle the complex spatial 
dependencies and temporal dynamics inherent in 
displacement processes. Deep learning approaches 
are particularly suited to this task because they 
can capture non-linear relationships between 
climate variables and displacement outcomes while 
accounting for spatial autocorrelation and temporal 
dependencies that traditional statistical methods 
struggle to model. This framework enables monthly 
displacement predictions up to six months in advance 
on three operationally relevant scales: small-scale 
movements (0-10 people), medium-scale events (11-
500 people) and large-scale crises (>500 people).

The remainder of this paper is organized as follows. 
Section 2 gives a brief overview of the literature, 
and section 3 describes data sources and the spatial 
gridding methodology. Section 4 presents the 
modelling framework and deep learning architectures. 
Section 5 discusses the modelling results, and 
Section 6 concludes. 
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Literature Overview
This paper is related to a number of different 
literatures that contribute insights into the challenges 
of anticipating forced displacement outflows. 
Early quantitative work by Schmeidl (1997) used 
pooled time-series analysis to identify structural 
factors driving forced displacement from 1971-1990, 
establishing that measures of generalized violence 
and military interventions have high predictive 
power of refugee outflows. This study, together with 
the growing availability of violence indicators, was 
instrumental to the pioneering paper by Schmeidl 
and Jenkins (1998), which posited the feasibility 
of applying Early Warning Models (EWMs) to the 
prediction of humanitarian disasters such as large 
refugee crises. Moore and Shellman (2004, 2006) 
extended this foundational work by analysing forced 
displacement from 1952 to 1995 and developing 
frameworks to predict whether individuals would 
become refugees or internally displaced persons. 
These foundational studies demonstrated the 
feasibility of data-driven prediction approaches, 
while revealing the complexity of modelling forced 
displacement. Evidence that violence serves as the 
main push factor in the case of forced displacement 
is also established by Moore and Shellman (2007), 
while in a country case study, Ibáñez and Velez 
(2008) found that actual violent events, in addition 
to perceptions of violence and a generalized lack 
of security, were central determinants of forced 
population movements in Colombia. These authors 
also determined that modelling forced displacement 
critically differs from traditional migration modelling in 
that the threat of violence vastly increases the costs 
of staying. 

Recent methodological advances, such as machine 
and deep learning approaches, have enabled 
more sophisticated forecasting approaches 
through improved computational methods and 
data availability. Carammia et al. (2022) developed 
adaptive machine learning algorithms to forecast 
asylum applications to EU countries up to four 
weeks ahead, integrating administrative statistics 

with non-traditional data sources, including internet 
searches and conflict event databases. Their 
approach demonstrates that individual country-
to-country displacement flows could be modelled 
accurately using dynamic variable selection methods. 
Henningsen (2025) created country-level early 
warning models using gradient boosting classification 
to predict displacement flows and sudden increases 
in movement, generating monthly risk indices for 176 
countries with prediction horizons extending to six 
months, reaching an accuracy level of over 80% to 
predict sudden increases in displacement numbers. 
Suleimenova et al. (2017) proposed agent-based 
modelling approaches to predict refugee destinations 
during conflicts, synthesizing data from UNHCR, 
conflict databases, and mapping services to achieve 
over 75% accuracy in forecasting camp destinations 
across three major African conflicts. Finally, 
Hoffmann Pham and Luengo-Oroz (2022) provided 
a comprehensive methodological framework for 
prediction of IDP and refugee flows, highlighting the 
growing interest in machine learning applications 
while noting the lack of standardized approaches to 
structured prediction problems. 

Another strand of literature this study relates to looks 
at the empirical relationship between climate, conflict, 
and displacement. In the most comprehensive 
study so far, Burke, Hsiang and Miguel (2015) 
use a hierarchical meta-analysis to estimate the 
mean effect and quantify the degree of variability 
across 55 studies on climate and conflict, and find 
that deviations from moderate temperatures and 
precipitation patterns systematically increase conflict 
risk. Contemporaneous temperature has the largest 
average impact, with each 1 standard deviation 
increase in temperature increasing interpersonal 
conflict by 2.4% and intergroup conflict by 11.3%. With 
respect to the climate-migration axis, the conceptual 
framework of Black et al. (2011), guides much of the 
empirical work by stating that in addition to exercising 
a direct influence, climate change indirectly affects 
migration decisions by affecting other drivers of 
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migration. Indeed, some macro-level studies provide 
support of the indirect effect of climatic factors on 
international migration through reduction of crop 
yields (Cai et al., 2016), and wage differentials 
between origin and destination (Beine and Parsons, 
2015). In a study that uses data from 115 countries 
between 1960 and 2000 to analyse the effect of 
differential warming trends across countries on the 
probability of either migrating out of the country or 
from rural to urban areas, Cattaneo and Peri (2016) 
find increased migration with higher temperature 
for middle-income countries, whilst migration is 
suppressed in low-income countries. Additionally, 
using a gravity model accounting for endogenous 
selection, Abel et al. (2019) exploit bilateral data on 
asylum seeking applications for 157 countries over the 
period 2006–2015 to empirically establish the links 
between climate change, conflict and migration. They 
find that climatic conditions, by affecting drought 
severity and the likelihood of armed conflict, played 
a significant role as an explanatory factor for asylum 
seeking in the period 2011–2015.

Finally, this work relates to a strand of literature 
that assesses the phenomena at much finer level of 
geographical granularity. Using a conflict database 
that contains 16,359 individual geolocated violent 
events for East Africa from 1990 to 2009, and 
climate indicators at gridded 1° resolution (~100 
km), O’ Loughlin et al. (2012) find that much warmer 
than normal temperatures raise the risk of violence, 

whereas average and cooler temperatures have no 
effect. Similarly, Harari and La Ferrara (2018) conduct 
a geographically disaggregated analysis of civil 
conflict in Africa between 1997 and 2011 taking as 
units of observation 110 × 110 km subnational “cells,” 
and estimate the incidence of conflict as a function of 
weather shocks and a number of other covariates in 
both the cell and neighbouring areas. Using a model 
that includes spatially and temporally autoregressive 
terms to account for the fact that conflict may be 
persistent over time and that both the covariates and 
the presence of conflict may be correlated across 
space, they find that a 1 standard deviation shock 
during the growing season to the Standardized 
Precipitation-Evapotranspiration Index (SPEI), which 
considers the joint effects of precipitation, potential 
evaporation, and temperature, is associated with a 1.3 
percentage point increase in conflict likelihood in the 
subsequent year, relative to the cell’s historic mean.

Despite evidence from climate-conflict research 
that environmental effects on human behaviour 
require fine spatial scales for detection, displacement 
prediction continues to operate primarily at country 
or regional levels. To the best of our knowledge, 
the present study is the first to address this gap 
by developing displacement forecasting using 
a new gridded panel dataset with a rich set of 
georeferenced covariates at the cell/year level. 
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Data

Data Sources

1  The 25 countries of focus include: Somalia, Eritrea, Ethiopia, Kenya, Tanzania, Burundi, Rwanda, Uganda, South Sudan, Sudan, Chad, Central 
African Republic, Democratic Republic of the Congo, Angola, Cameroon, Nigeria, Niger, Benin, Togo, Ghana, Burkina Faso, Mali, Côte d’Ivoire, 
Senegal, and Mauritania.

Our analysis uses forced displacement data from 
the UNHCR’s PRIMES database , which contains 
individual-level  records of all refugees and asylum 
seekers registered by UNHCR. The spatial gridding 
methodology and data processing procedures for 
converting these individual-level registration records 

into gridded displacement outflows counts are 
detailed in Wells et al. (2025). This approach enables 
consistent spatial aggregation of displacement 
events at 0.5-degree grid resolution while preserving 
temporal granularity at the monthly level.

Spatial and Temporal Coverage
The data set covers monthly displacement data for 
25 West, Central and East African countries1 from 
January 2010 to September 2025. This 15-year time 
series provides 189 monthly observations for each 
grid cell, creating a comprehensive spatial-temporal 
dataset for displacement modelling. 

The 0.5-degree grid resolution balances 
computational feasibility with the spatial granularity 
required to detect localized displacement patterns, 
particularly those driven by environmental and 

conflict factors operating at sub-national scales. The 
geographic coverage includes major displacement-
affected regions across three African sub-regions, 
capturing diverse conflict contexts, climate zones, 
and socio-economic conditions. This spatial scope 
enables the analysis of displacement patterns 
across varied environmental and political contexts 
while maintaining sufficient observations for 
statistical modelling.

Target Variable Characteristics
The displacement data exhibits several challenging 
statistical properties that significantly influence 
modelling approaches. The distribution is 
characterized by extreme right skewness, with most 
cell/year observations recording zero displacement 
counts. Of the 6221 grid cells, only  1,742 (28.0%)
have experienced at least some displacement and 

of the total  1,175,769 observations in the dataset 
(6,221 grid cells x 189 months), 1,063,920 (90.5%) 
have displacement values of zero, while only 111,849 ( 
(9.5%) record one or more displaced persons. 
To address these statistical challenges posed by 
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the raw count data, we implement a three-category 
classification scheme that aligns with operational 
humanitarian response frameworks:

•	 Small-scale movements (0-10 people): Captures 
minor displacement and population movements

•	 Medium-scale events (11-500 people): 
Represents significant displacement events 
requiring humanitarian attention

•	 Large-scale crises (>500 people): Identifies 
major displacement emergencies that may 
require immediate large-scale response

This binning approach addresses the statistical 
challenges of modelling highly skewed count data 
while creating operationally meaningful categories 
corresponding to different levels of humanitarian 
response capacities.

Exploratory Data Analysis
The displacement data exhibit significant temporal 
variation that reflects major conflict and political 
events in the study region. Figure 1 shows the 
average displacement count across all grid cells over 
the 15-year study period, revealing several distinct 
phases. Counts escalated from 2011 onward, with 
average displacement counts reaching peaks of 
nearly 30 persons per grid cell during 2014-2016, 
corresponding to major conflicts in Mali, the Central 
African Republic, South Sudan, and the Lake Chad 

Basin. The average displacement spiked again in 
late 2016 through 2017, reflecting increased conflict 
in South Sudan. There was a decrease in average 
displacement from 2018 to 2023, with a spike in 
2023, reflecting the outbreak of the civil war in Sudan 
and increased conflict in the border region between 
Burkina Faso, Mali and Niger.  The time series 
demonstrates substantial volatility, with sharp spikes 
followed by periods of relative stability, highlighting 
the episodic nature of forced displacement events.

Date
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Average count across grids over time

Figure 1. Average displacement per grid cell from 2000 to 2025.

The temporal dynamics of displacement events reveal 
additional complexity beyond simple time series 
patterns. Figure 2 shows the distribution of the top 
ten grids by displacement counts over time, coloured 
by country of origin. This visualization reveals the 
episodic nature of major displacement events, which 

is characterized by many large and sudden spikes in 
the displacement figures.  It is also noteworthy that 7 
of the 10 grid cells with the most overall displacement 
fall within 3 countries; Sudan, Democratic Republic of 
the Congo, and South Sudan.  
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Figure 2. Top ten grid cells by maximum peak over study period.

The duration characteristics of the displacement spikes 
provide further insight into the temporal structure 
of forced displacement events. Figure 3 displays 
the distribution of the duration of the spikes in all 
observations, where a spike is defined as a continuous 
period of elevated displacement above the baseline 
(monthly average level in the previous year). 

The distribution shows that the majority of 
displacement spikes are short-lived, with 
approximately 10,000 events lasting only 1-3 

months. The frequency drops for longer durations, 
with fewer than 2,000 events lasting 4 months, 
and few extending beyond 6 months. This pattern 
suggests that most major displacement events are 
acute responses to specific triggers rather than 
sustained processes, although the small number of 
longer-duration events may represent protracted 
displacement situations requiring different analytical 
and operational approaches.
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Figure 3. Distribution of spike duration over all grid cells measured as significant  
consecutive deviation from a grid’s baseline.
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Figure 4 shows monthly displacement per grid 
averaged over 5-year segments. The emerging pattern 
shows that seasonality in displacement numbers 
is increasing over time, with peak displacement 
coinciding with the late dry season and early planting 
period, when food stocks are lowest and competition 
for resources is highest. This might indicate that 
environmental factors are increasingly relevant to 
predict forced displacement, as populations become 
more vulnerable to seasonal stressors.

The spatial distribution of displacement events shows 
clear geographical clustering that reflects conflict 
patterns and refugee flow corridors. Figure 5 displays 
the year of maximum displacement for each grid 
cell from 2000 to 2025 in colour and the aggregate 
displacement figure in the same year represented by 
the bubble size. Lighter bubbles show grid cells that 
have seen their highest year of displacement closer 
to 2000 and darker ones experienced the highest 
year of displacement more recently. Blank areas 
represent grid cells that have never experienced 
any displacement during this period. The colours 
and sizes of the bubbles reflect the reality of when 
and how many people were forced to leave certain 
areas, mainly due to conflict. The lightest colours in 
Angola reflect the displacement that occurred prior 
to the end of the 27-year-long civil war in 2002. 
Southern Somalia and Côte d’Ivoire are a green-blue. 
In Somalia, this reflects the formation of the extremist 
group Al Shabaab in the 2006 and a civil war which 
started in 2009. In Côte d’Ivoire, this reflects the 
outbreak of the Second Ivoirian Civil War in late-2010. 
The bubbles in eastern Mali and Central African 
Republic are slightly darker blue, representing the 
displacement that took place at the outbreak of civil 

wars in these countries, each in 2012. South Sudan 
experienced its highest levels of displacement during 
the civil war of 2014 to 2020, which is represented by 
the darker bubbles. Finally, Burkina Faso, northwest 
Nigeria, and Sudan all have dark bubbles, showing 
that these grid cells experienced most displacement 
in the last couple of years. Some of these bubbles are 
very large, indicating the high levels of displacement 
from certain grid cells, particularly in southwest 
Burkina Faso, southern Sudan, and eastern Sudan. An 
additional note is that some areas show a variation in 
colouring. For instance, the Darfur region in western 
Sudan has both light and dark coloured bubbles. This 
reflects high levels of displacement due to the Darfur 
Crisis in the early 2000s and the recent conflict 
stemming from the Sudanese Civil War, since 2023. 

We observed that displacement seems to be 
clustered among grid cells in geographic proximity 
and conducted a spatial autocorrelation analysis 
using Moran’s I statistic to test this apparent 
spatial pattern formally. This approach allows us to 
quantify the degree of spatial clustering observed 
in the displacement data and identify statistically 
significant hotspots throughout the region. Our 
analysis yields a global Moran’s I value of 0.1885 
(k-nearest neighbours with k = 6), indicating a weak 
but positive spatial autocorrelation in displacement 
patterns. This suggests some tendency for similar 
displacement values to cluster together, although the 
effect is not particularly strong. Despite the modest 
coefficient, the permutation test resulted in a p-sim 
value of 0.001, confirming that this spatial pattern is 
statistically significant and unlikely to have occurred 
by chance alone.

Figure 4. Seasonality pattern of gridded forced displacement relevant to predict 
forced displacement.
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The map in Figure 6 classifies each cell in the 
grid according to its most common value of local 
indicators of spatial association (LISA) over time, 
categorizing them into four distinct patterns: high-
high, high-low, low-high, and low-low. The areas 
marked as high-high (red) represent displacement 
hotspots—locations with high displacement values 
surrounded by neighbouring cells that exhibit high 
displacement. These clusters are prominently visible 
across coastal West Africa (including Nigeria, Burkina 
Faso, Côte d’Ivoire), Ethiopia, Somalia, and parts of 
East Africa. In contrast, low-low clusters (light grey) 
indicate areas where low displacement values are 
spatially concentrated, visible in parts of Sudan, 
South Sudan, and Central Africa. The high-low (pink) 
and low-high (brown) designations represent spatial 
outliers—areas where displacement values differ 
markedly from their neighbours. These outliers 
appear more sparsely distributed and often at the 
borders of high-high clusters. The presence of 

statistically significant spatial clustering reinforces our 
methodological decision to incorporate spatial effects 
in our predictive modelling approach.

These findings suggest that displacement is not 
merely a function of localized environmental or 
socio-political factors but is influenced by broader 
regional dynamics and possible spillover effects from 
neighbouring areas. Identifying specific hotspots 
provides valuable information to target preventive 
interventions and humanitarian responses. The 
clustering patterns align with known conflict zones 
and regions of environmental stress. The high-high 
clusters in the Horn of Africa correspond to areas 
experiencing recurrent drought conditions and 
long-lasting conflicts. In contrast, clusters in West 
Africa coincide with regions of political instability 
and temperature anomalies, providing some 
evidence displacement patterns may reflect complex 
interactions between environmental stressors and 
socio-political factors.

Figure 5. Year of the highest displacement count per grid cell.
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Figure 6. Most common LISA cluster type per grid cell over time. 

Feature variables

2  https://www.chc.ucsb.edu/data/chirtsdaily

Our modelling framework incorporates a 
comprehensive set of 180 variables organised into 
six thematic categories: environmental, geographic, 
demographic, food security, socio-economic, political, 
and conflict. 

Environmental
We use data based on four categories of 
environmental variables in our model. These are 
data on temperature, precipitation, vegetation, 
and drought. The temperature data come from 
three different sources: Climate Hazards InfraRed 
Temperature with Stations (CHIRTS), which offers daily 
temperature highs at 0.05° x 0.05° from 01 January 
19802; Copernicus ERA-5-land post-processed daily-
statistics, which offers daily temperature highs at 0.10° 

https://www.chc.ucsb.edu/data/chirtsdaily
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x 0.10° from 01 January 19503; and Berkeley Earth, 
which offers monthly temperature averages at 0.25° 
x 0.25° from January 18504. The precipitation data 
come from two sources: Climate Hazards InfraRed 
Precipitation with Stations (CHIRPS), which offers 
hourly precipitation total at 0.05° x 0.05° from 01 
January 19815; and Copernicus ERA-5, which offers 
hourly precipitation measurements at 0.10° x 0.10° 
from 01 January 1950. Vegetation is measured 
through the Normalized Difference Vegetation Index 
(NDVI), which approximates the level of vegetation 
at a point in time through satellite data. We use NDVI 
data from NASA, which offers monthly averages at 
0.05° x 0.05° from January 20006. Drought levels are 
measured through the Standardized Precipitation 
Evapotranspiration Index (SPEI), which is an index 
used to approximate the level of dryness and drought 
at a point in time. Data are extracted from the SPEI 
Global Drought Monitor, which offers monthly SPEI 
averages at 1.00° x 1.00° from January 19507. 

Geographic
We use four different types of geographic or 
resource variables, which include landcover, agro-
ecological zone, elevation, river presence, road 
presence, and market access. The landcover data are 
extracted at 0.05° x 0.05° resolution point locations 
from Copernicus. The data are categorized into 
8 general types: tree cover, bare area, shrubland, 
cropland, grassland, urban, cover flooded and water8. 
Additionally, urban areas are categorized through data 
from Natural Earth9. Identifying grid cells classified as 
urban, we developed a variable that measures the 
distance from each grid cell to the nearest urban grid 

3  https://cds.climate.copernicus.eu/datasets/derived-era5-land-daily-statistics?tab=overview
4  https://berkeleyearth.org/data/
5  https://www.chc.ucsb.edu/data/chirps
6  https://www.earthdata.nasa.gov/topics/land-surface/normalized-difference-vegetation-index-ndvi
7  https://spei.csic.es/map/maps.html#months=1#month=8#year=2025
8  https://land.copernicus.eu/en/products/global-dynamic-land-cover/land-cover-2020-raster-10-m-global-annual
9  https://github.com/nvkelso/natural-earth-vector/blob/master/50m_cultural/ne_50m_urban_areas.shx
10  https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/HJYYTI
11  https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/G4TBLF
12  https://github.com/nvkelso/natural-earth-vector/blob/master/10m_physical/ne_10m_rivers_lake_centerlines.shp
13  https://data.humdata.org/dataset/hotosm_ago_roads
14  https://landscan.ornl.gov/
15  https://eogdata.mines.edu/wwwdata/dmsp/monthly_composites/
16  https://eogdata.mines.edu/nighttime_light/monthly_notile/
17  https://icr.ethz.ch/data/epr/core/
18  https://spatial.faoswalim.org/

cell. Agro-ecological zone (AEZ) data are extracted 
from the International Food Policy Research Institute, 
which are coordinate polygons of the various zones. 
AEZ classifications for Africa have three dimensions: 
major climate zones (tropics or subtropics), moisture 
zones (water availability) and highland/lowland (warm 
or cool based on elevation)10. Elevation data come 
from the HarvestChoice CELL5M Database. The data 
give the elevation, in meters, at coordinate points 
at a resolution of 5 arc minutes (approximately 9.30 
km)11. The geographic presence of a river is based on 
data from Natural Earth, which offers the coordinate 
geometries of rivers12. Road presence is based on data 
from Humanitarian OpenStreetMap. Each grid cell is 
labelled based on the presence of at least some of the 
grid cell area encompassing a paved road or unpaved 
road, if neither of these are present, then the grid cell 
is labelled as no-road13.

Demographic
Demographic data used for the models are predicted 
population and ethnic composition of each grid cell. 
Predicted population is based on LandScan annual 
population data14 along with monthly DMSP15 and 
VIIRS16 nightlight data. The annual population and 
nightlight data are used to predict monthly population 
within each grid cell. Ethnic group location data are 
extracted from ETH Zurich, which are coordinate 
polygons of the boundaries between ethnic groups17. 
In order to account for Somali clan boundaries, 
SWALIM data18 on Somali clan locations are used. 
Based on the ethnic classification of each grid cell, 
we created a variable to measures the distance to the 
nearest grid cell of a different ethnic classification. 

https://cds.climate.copernicus.eu/datasets/derived-era5-land-daily-statistics?tab=overview
https://berkeleyearth.org/data/
https://www.chc.ucsb.edu/data/chirps
https://www.earthdata.nasa.gov/topics/land-surface/normalized-difference-vegetation-index-ndvi
https://spei.csic.es/map/maps.html#months=1#month=8#year=2025
https://land.copernicus.eu/en/products/global-dynamic-land-cover/land-cover-2020-raster-10-m-global-annual
https://github.com/nvkelso/natural-earth-vector/blob/master/50m_cultural/ne_50m_urban_areas.shx
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/HJYYTI
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/G4TBLF
https://github.com/nvkelso/natural-earth-vector/blob/master/10m_physical/ne_10m_rivers_lake_centerlines.shp
https://data.humdata.org/dataset/hotosm_ago_roads
https://landscan.ornl.gov/
https://eogdata.mines.edu/wwwdata/dmsp/monthly_composites/
https://eogdata.mines.edu/nighttime_light/monthly_notile/
https://icr.ethz.ch/data/epr/core/
https://spatial.faoswalim.org/
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Food security
The food security classification of a grid cell on a 
monthly basis is based on FEWS NET data, which is 
released every three months with the data on the food 
security situation in subnational areas for the current 
month, predicted over the next three months, and four 
to six months into the future19. Certain countries are 
not included in the FEWS NET data, grid cells in these 
countries are imputed with a food security rating based 
on nearest neighbour imputation. 

Socio-economic
Child health variables can offer an indication of 
the overall wellbeing of the population within a 
grid cell. These variables, infant mortality rate and 
child malnutrition rate, are extracted from the PRIO-
GRID dataset. These variables are gridded to 0.5° 
resolution and are time-invariant, reflecting the values 
of the respective variables for the year 200020. In 
order to approximate market access, data from the 
International Food Policy Research Institute are used 
to label each grid cell with the average time in hours 
to the nearest market within towns of various size: 
20,000, 50,000, 100,000, 250,000 and 500,000. 
To capture overall accessibility to markets of varying 
sizes, we constructed a composite indicator called 
the Market Accessibility Index (MAI). Each travel-
time variable was first weighted inversely by the 
corresponding population size, giving greater 
emphasis to accessibility to markets in larger urban 
centres. Specifically, MAI was calculated as the sum of 
each travel time divided by the respective population 
scale. The resulting index was log-transformed 
to reduce skewness and then normalized using 
min–max scaling to a 0–1 range. Finally, the scale 
was inverted so that higher MAI values represent 
greater accessibility (i.e., shorter travel times to larger 
towns and cities), while lower values indicate poorer 
accessibility. 

To account for inequality within grid cells, a time-invariant 
Gini coefficient was calculated by gridding WorldPop 
data21 from 2020 and VIIRS nightlight radiance data, 
averaged over the year 2020. These variables were 
placed inside 0.02° grid cell. The mean population within 

19  https://fews.net/data/acute-food-insecurity
20  https://grid.prio.org/#/download
21  https://www.worldpop.org/
22  https://fragilestatesindex.org/global-data/
23  https://acleddata.com/

these 0.02° grid cells was used along with the 2020 
nightlight intensity data to estimate nightlight per capita 
at the 0.02° grid cell-level. The nightlight per capita of 
each 0.02° grid cell is used to estimate the inequality 
(Gini index) within each grid cell.

Political
To account for the political system and quality of 
governance that people experience, we use data from 
the Fragile States Index22. These variables include 
group grievance, which quantifies the divisions 
and schisms between different groups; economic 
inequality; public services; human rights; security 
apparatus; and fractionalized elites, which quantifies 
the fragmentation of state institutions along ethnic, 
class, clan, racial, or religious lines. The fragility 
variable is a composite of the previous variables. 
These indicators are annual and at the national level, 
so all grid cells in a country and in the same year 
carry the same value for each individual indicator.

Conflict
Conflict data used for this project is extracted from 
the Armed Conflict Location & Event Data (ACLED), 
which offers daily data on conflict events with geo-
coordinated point locations of each conflict event as 
well as a description of each event23. The descriptions 
of each event include information on the actors 
involved, number of fatalities, whether civilians were 
targeted, a categorization of each actor involved 
(as state forces, rebel group, political militia, identity 
militia, civilians, etc.), and the type of event (battle, 
protest, riot, strategic development, etc.). Based on the 
date and geo-point location of conflict events, data are 
aggregated into grid cells on the monthly basis. We 
focus on the number of events and conflict fatalities in 
each grid cell in each month. We also count the number 
of conflict events and fatalities in neighbouring grid 
cells to account for nearby violence that might drive 
people to become displaced. 

Table 1 provides a detailed breakdown of these 
variables, including their temporal and spatial 
resolutions, as well as data sources. 

https://fews.net/data/acute-food-insecurity
https://grid.prio.org/#/download
https://www.worldpop.org/
https://fragilestatesindex.org/global-data/
https://acleddata.com/
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Variable type Unit Source

Climate variables

Temperature Daily, 0.05° 
Daily, 0.10°
Monthly, 0.25°

CHIRTS
Copernicus ERA-5
Berkeley Earth

Precipitation Daily, 0.05° 
Daily, 0.10°

CHIRPS
Copernicus ERA-5

Normalized Difference Vegetation Index Monthly, 0.05° NASA

Standardized Precipitation 
Evapotranspiration Index

Monthly, 1.00° SPEI Global Drought Monitor

Resource and geographic variables

Landcover Constant, 0.05° Copernicus
Natural Earth

Agro-ecological zone Constant, defined regions International Food Policy 
Research Institute

Elevation Constant, 0.10° HarvestChoice CELL5M

River Constant, defined regions Natural Earth

Road Constant, defined regions Humanitarian OpenStreetMap

Market access Constant, 0.10° International Food Policy 
Research Institute

Demographic variables

Population density Monthly, 0.10° LandScan, DMSP, VIIRS

Ethnicity Constant, 0.10° ETH Zurich
SWALIM

Food security variables

Food security Monthly, 0.10° FEWS NET

Socio-economic and wellbeing variables

Child health Monthly, 0.50° PRIO

Market access Constant, 0.10° International Food Policy 
Research Institute

Gini Monthly, 0.10° WorldPop, VIIRS

Political variables

Fragility Annual, national Fragile States Index

Conflict variables

Conflict events and fatalities Daily, geo-point locations ACLED
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Methodology
We develop a classification model for the three 
categories of forced displacement defined in section 
3 (low, medium, and high) across three predictive 
horizons of one, three, and six months. We evaluate 
five different types of classification models in our 

framework; a baseline model, a tree-based method, 
three different types of neural network architectures, 
and combine them in an Ensemble model. To 
maximize performance, we train a separate model for 
each predictive horizon.

Baseline Model
The baseline model is a simple naïve model, 
where the last available observation is used as the 
prediction for all three horizons. The naïve model 

tends to perform surprisingly well in many real-world 
scenarios, particularly in slowly changing or persisting 
situations over short-time horizons. 

Table 1. Variables used by model type.

Variable CNN/ConvLSTM/2-stage convLSTM (3 models) LightGBM

Core conflict variables
conflict_events ✓ ✓
conflict_fatalities ✓ ✓
new_event ✓ ✓
new_event_decay ✓
Geographic variables
dist_urban ✓ ✓
border_dist ✓ ✓
Climate variables
high_temperature ✓
heavy_precipitation ✓
high_temperature_accumulated ✓ ✓
heavy_precipitation_accumulated ✓ ✓
drought_accumulated ✓ ✓
Socioeconomic variables
Population ✓ ✓
Fragility ✓ ✓
Food security ✓ ✓
Temporal features
count (lag1-12) ✓
count rolling average ✓
min rolling average ✓
max rolling average ✓
Other variables
All base variables ✓
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Tree-based Models
We use LightGBM, which has been selected for its 
computational efficiency and low memory usage, 
which is particularly important given the size of 
our dataset (Ke et al., 2017). LightGBM has shown 
strong performance in time series forecasting tasks 
(Makridakis et al., 2022) and is also well suited to 
handle high-dimensional data, due to its built-in 
feature selection via split gain to keep the most 
relevant variables. To account for the temporal aspect 
of our data, we included the lagged response variable 
of up to 12 months along with engineered features 

such as exponentially weighted moving averages. 
After testing different subsets of variables, the final 
LightGBM model was selected to use a subset of 
the main 113 feature variables mentioned above, 
combined with temporal features. The model’s 
inherent feature selection was particularly important 
in identifying key climate and environmental 
predictors. Extensive testing showed that including 
environmental variables improved the model’s 
accuracy, showing the importance of incorporating 
climate data into our framework. 
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Mean temp. anomaly for last 10 years from 1950-79 temp. baseline
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 Figure 7. SHAP importance of top 10 climate variables for class 2 prediction (6-month horizon LightGBM model). 
Dots show individual data point predictions; colour represents feature value.

Figure 7 presents the top 10 climate variables 
ranked by the highest average impact on the model 
predictions for the LightGBM model predicting 6 
months ahead. The x-axis represents the SHAP value 
– a measure that quantifies a feature’s contribution 
to a specific prediction. The y-axis displays the 
features, with each dot signifying the SHAP value of 
a particular feature for a given data point. The colour 

of the dot represents the associated feature value 
from low (blue) to high (red), allowing to gauge the 
extent of each feature’s contribution to the prediction. 
For example, the number of high temperature days 
in the month prior to the NDVI peak month shows 
that higher values are associated with positive SHAP 
values increasing the likelihood of class 2 predictions. 

Figure 9. Framework of neural 
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Neural networks
The three neural networks that we employ are 
a simple convolutional neural network (CNN), a 
convolutional LSTM with a simple architecture, 
and a hierarchical convolutional LSTM. Due to 
dimensionality issues in spatial deep learning (Tomaso 
Poggio, 2018) the CNN and ConvLSTM models 
employ a focused set of 11 core variables which were 
selected using SHAP values from the final LightGBM 
model which include the most important identified 
climate, conflict, and socioeconomic variables as 
displayed in Table 1. 

Convolutional Neural 
Network (CNN)
The 3D CNN processes spatiotemporal sequences 
using stacked 3D convolutional layers that jointly 
capture temporal and spatial dependencies. The idea 
is to have changing kernel sizes for our temporal fields 
to capture short- and long-term temporal patterns. 

CNNs have been widely used in the context of 
spatiotemporal modelling, especially in the context 
of flood predictions, where they have demonstrated 
the ability to capture large- and small-scale spatial 
patterns well (Yan et al., 2022). Furthermore, another 
advantage of 3D CNNs is that they process space 
and time simultaneously rather than sequentially, 
which helps to preserve spatio-temporal correlations 
throughout the network. 

The network processes the information through 
5-dimensional tensors that encode spatiotemporal 
information in the standard format: [batch size, 
sequence length, channels, height, width] (Chollet 
& Watson, 2025). This format is typically used for 
video sequences. In our case, this can be seen as 
a sequence of multi-channel spatial frames over 
time, where each frame represents the geospatial 
data at a specific point in time. Each tensor contains 
80 consecutive time points as input, followed by 
the target displacement category at the specified 
forecast horizon. The height and width dimensions 
of the tensor refer to the spatial information, with 
the original 0.5° grids mapped to cells within the 
tensor grid. Adjacent cells in the original geographic 
grid are assigned adjacent positions in the height 
and width dimensions of the tensor, preserving 

spatial relationships and allowing the models to 
learn from spatial dependencies. The channel 
dimension refers to the number of feature variables, 
such as geographic and climate variables, plus 
the response variable. The batch size determines 
how many complete sequences can be processed 
simultaneously during training.

The model employs a rolling-origin cross validation 
approach for training and optimization across 
different predictive horizons. This approach is 
essential for time series forecasting as it mimics real-
world scenarios by respecting the temporal nature of 
the data. The tensors are created according to this 
sliding-window approach, where each tensor is built 
using the specified consecutive time points as input 
and the target displacement category at the specified 
forecast horizon. The origin then rolls forward through 
time by one step and new tensors are created. The 
number of training samples depends on the length of 
the time series and the step size. 

The architecture of the CNN consists of three 
convolutional layers followed by a projection layer. 
The first 3D convolutional layer uses a kernel size 
of (12,3,3), over the temporal and spatial dimensions 
with 16 output channels and applied padding to 
preserve resolution. After convolution, we apply 
batch normalization to stabilize training, ReLU 
activation to introduce nonlinearity, and a 3D dropout 
rate of 20% to prevent overfitting. The second 3D 
convolutional layer increases the temporal kernel 
size to (24, 3, 3) to enable the model to capture 
longer-range temporal patterns and expand the 
feature space to 32 channels. Again, we apply batch 
normalization, ReLU and dropout at the end. As a 
third convolutional layer, we have a feature interaction 
layer which uses a smaller kernel size of (3,3,3). This 
has been introduced as a layer to learn more complex 
interactions between the features it has already 
extracted. After the convolutional blocks, the model 
extracts the last time slice from the feature map, and 
a 1x1x1 projection layer produces the final spatial 
prediction for our three classes. 

Training employs a weighted Cross Entropy loss 
function where the weight for the minority class 2 is 
treated as a hyperparameter. The model undergoes 
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hyperparameter optimization over the weight of the 
minority class, learning rates, number of epochs, 
batch size using a simple grid search.

Convolutional Long Short 
Term Memory (ConvLSTM)
We use a simple convolutional LSTM, which was 
inspired by Shi et al. (2015) to perform a sequence-
to-frame prediction which has been shown to be 
stable and powerful in capturing the temporal 
and spatial information encoded in a data set. 

It is implemented through a ConvLSTM cell by 
integrating 2D convolutional layers with the memory 
mechanism of LSTMs (input, forget, cell, and 
output gates) to preserve spatial information while 
enabling temporal memory. Unlike 3D CNNs which 
process fixed temporal windows, ConvLSTM uses 
gating mechanisms, which allow us to selectively 
determine which past information to remember and 
forget. The sequential processing approach allows 
variable-length sequences without the computational 
overhead of convolutions, facilitating the use of long 
temporal sequences. 

2D convolutional 
layer 

Input data 
5-dimensional

tensor

GroupNorm layer

Forget gate
2D conv

Input gate
2D conv

Cell gate
2D conv

Out gate
2D conv

σ σ tanh

ct—1

ht—1

ht

ct

1x1 convolutional
layer (Projection)

Class predictions
[B, 3, H, W]

σ

Figure 8.  Architecture of the convLSTM model. σ refers to sigmoid activation and tanh refers to hyperbolic 
tangent. The circles refer to element-wise multiplication or addition. 
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Again, we used up to 80 time points to capture long-
range temporal dependencies. As with the CNN, the 
data are represented and processed as 5-dimensional 
tensors (batch, time, channels, height, width) which 
encode the spatiotemporal information and follow 
a cross-validation technique. The architecture 
consists of a single 2D convolutional layer and a 
GroupNorm layer that processes the concatenated 
input and hidden state. The input data set is 
processed sequentially through the convLSTM cell. 
At each timestep, the current input is concatenated 
with the previous hidden state and fed through the 
convolutional layer followed by the normalisation 
layer, producing features that are split into four sets 
of channels. The outputs are then split and fed into 
the four LSTM gates (input, forget, cell, and output 
gates) with sigmoid activations for the input, forget, 
and output gates, and tanh activation for the cell gate. 
The gates selectively decide which spatiotemporal 
information to retain in the cell state and which to 
discard. Unlike traditional LSTMs, this network is 
constructed so that the spatial structure is preserved 
through convolutions rather than fully connected 
layers, maintaining spatial resolution throughout the 
temporal sequence processing. After processing all 
timesteps, a 1x1 convolutional projection layer maps 
the learned spatio-temporal features to the final 
class-specific spatial prediction map for sequence-
to-frame tasks.

Hierarchical convLSTM
The simple convolutional LSTM is then further extended 
through a hierarchical encoder-decoder architecture 
that captures local and global spatiotemporal patterns, 
following the approach of Shi et al. (2015). The encoder 
consists of two sequential ConvLSTM cells. The first cell 
extracts local spatiotemporal features maintaining the 
base number of hidden channels. These local features 
are then passed to the second cell processes, which 
learn more global spatiotemporal patterns, which is 
done by doubling the hidden channel size to allow for 
increased complexity. Each stage processes the full 
temporal sequence, with stage 2 taking the hidden state 
outputs from stage 1 as its inputs, allowing the network 
to build hierarchical spatiotemporal representations. 

Tensor creation

Raw Geospatial Data

Modelled 
Geospatial 
Data

Climate variables

Geographic variables
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Stacking data into 
0.5o grids and scaling
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• Optimised convLSTM on gridded geospatial data

Model Output

Bayesian Hyperparameter Optimization:
• Number of epochs
• Learning rate
• Kemel size

• convLSTM network
• integrating spatiotemporal

information

Figure 9. Framework of neural 
network methodology. 
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A final 1x1 convolutional projection layer maps the 
decoder’s output to class-specific spatial predictions. 
The architecture implements several design 
choices to improve performance and flexibility. 
Each ConvLSTM cell includes adaptive GroupNorm 
layers that dynamically adjust the number of groups 
(ranging from 1 to 32) based on the channel count to 
ensure numerical stability. The progressive channel 
expansion from the base hidden channels in Stage 
1 to double in Stage 2, followed by contraction back 
to the base size in the decoder, creates a bottleneck 
architecture that forces the network to learn 
compressed global representations. In particular, 
each ConvLSTM cell generates class predictions 
at each time step through internal projection layers 
of 1×1, enabling possible intermediate supervision, 

although only the final output of the decoder is used 
for the final prediction. The decoder’s efficiency 
is enhanced by processing only a single timestep 
rather than the full sequence, reducing computational 
cost while maintaining the benefits of hierarchical 
feature integration.

The decoder then combines the two scales of 
information through a fusion mechanism. This 
hierarchical approach basically enables specialized 
learning of local and global spatial patterns, which 
are then integrated to produce more accurate 
predictions. The architecture should provide superior 
spatiotemporal modelling compared to single-
stage approaches, with the trade-off of increased 
computational cost.

Ensemble model
To exploit the strengths of different model 
architectures, we implement a weighted ensemble 
approach over all classification models. The 
ensemble weights are optimized on the validation set. 
For each forecast horizon and current displacement 
level, we determine the optimal linear combination 
of model predictions that minimize the average F1 
score. To ensure that forecasts remain accurate and 
reliable, models are re-trained every three months 
incorporating the latest data and trends, and the 
ensemble temporally adjusts weights according to 
the models’ predictive performance. This regular 
updating allows the system to adapt to changing 
conditions on the ground and maintain its usefulness 
in humanitarian planning.
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Results
Each method is used to develop predictive models for 
the three crises classes defined above. We use the F1, 
and PR AUC scores for all classes to evaluate model 
performance. The F1 score is a harmonic average of 
the precision and recall metrics, calculated separately 
for each class:

The harmonic average ensures that both metrics 
must be reasonably high for a good F1 score. We 
complement this with the PR AUC score for a 
probability-based metric which is also particularly 
suitable for class imbalance. The PR AUC summarizes 
the precision-recall trade off and ranges from 0 to 1, 
with higher values indicating better performance. 

Our analysis shows that Ensemble modelling 
approaches show high predictive performance for 
displacement levels across all forecast horizons, with 
particularly interesting results for high displacement 
events. The LightGBM model achieves highest overall 
accuracy with a PR AUC of at least 0.64 for the 6 
months horizon, while the Ensemble approach is better 
at capturing the most critical class 2 events. Even at 6 
months into the future, the Ensemble model achieves 
a PR AUC of 0.50 for class 2, representing large-scale 
displacement events that account for less than 0.3% 
of the overall dataset. Table 2 below presents the 
detailed evaluation approach including results across 
all models, forecast horizons, and countries. 

Table 2. Precision-Recall AUC per model and predictive horizon.

Horizon (months) Model PR AUC F1

1

Baseline 0.87188 0.989252

LightGBM 0.999654 0.990196

Simple convLSTM 0.999227 0.982280

CNN 0.998685 0.825868

Hierarch. convLSTM 0.998400 0.979131

Ensemble 0.999571 0.988363

3

Baseline 0.587037 0.756006

LightGBM 0.848264 0.780281

Simple convLSTM 0.773426 0.694041

CNN 0.714724 0.655764

Hierarch. convLSTM 0.755635 0.728660

Ensemble 0.838713 0.757251

6

Baseline 0.435189 0.652512

LightGBM 0.644033 0.598180

Simple convLSTM 0.622529 0.589392

CNN 0.609971 0.560585

Hierarch. convLSTM 0.604661 0.642479

Ensemble 0.699143 0.666627
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Overall, model performance displayed in Table 2 
shows that the LightGBM, followed by the Ensemble 
model, achieves the highest accuracy across all 
predictive horizons. Even at horizon 6, the PR AUC 
and F1 score remain relatively high. However, these 
aggregated metrics mask class-specific patterns, 
particularly for class 2, which represents less than 
0.3% of observations but constitutes the most 
important prediction target. 

Class-specific metrics in Table 3 show distinct 
modelling strengths. All models demonstrate 
consistently strong performance in predicting 
the majority class (class 0) with PR AUC scores 
exceeding 0.99 and negligible differences 
between modelling approaches. This reflects 
the prevalence of this class and the ability of the 
model to identify stable regions. Class 1, which 
represents moderate and ongoing displacement, 
is best predicted by the LightGBM model across all 
horizons, using the main environmental, geographic, 
conflict, and socioeconomic variables to capture 
non-linear dynamics.

Class 2 represents the most complex and important 
displacement dynamics, characterized by rare and 
volatile events which makes them difficult to forecast. 
The ensemble model performs best at capturing this 

class for all horizons, showing its strength in leveraging 
different models. As expected, the metrics for class 
2 are lower than the ones for class 1 but are still 
substantially higher compared to the Baseline model. 
Performance degradation is also low across longer 
predictive horizons for classes 0 and 1, while it is slightly 
more pronounced for class 2. This pattern is expected 
as class 0 represents most of the observations in the 
dataset and stable situations and class 2 represents 
volatile events which are more difficult to forecast over 
extended periods.  
Testing different variable subsets also showed the 
importance of including climate variables into our 
framework. Including them improved the PR AUC score 
for class 2 by up to 5% mainly in East and West Africa, 
showing how critical they are for the most important 
class. Feature importance analysis also showed that 
they were among the top predictors across horizons 3 
and 6for class 2 and class 1. This highlights that climate 
variables are not only supplementary features but 
important components for understanding displacement 
risk, particularly for the most severe humanitarian crises. 

Based on these results, our final prediction model is a 
hybrid approach where we use LightGBM for classes 
0 and 1, and the Ensemble model for class 2 as our 
final model.   

Table 3. Under Curve (PR-AUC) by displacement class and forecast horizons. Best values are in bold, second-
best are underlined.

Class Model 1 Month 3 Months 6 Months

0 Baseline 0.991458 0.991339 0.991797
LightGBM 0.999728 0.999664 0.999600
Simple convLSTM 0.999388 0.999090 0.998210
CNN 0.999415 0.998260 0.999195
Hierarch. convLSTM 0.998337 0.998489 0.998799
Ensemble 0.999729 0.999537 0.999496

1 Baseline 0.613626 0.549013 0.496395
LightGBM 0.882590 0.822296 0.770439
Simple convLSTM 0.804354 0.656441 0.620376
CNN 0.819927 0.747606 0.655166
Hierarch. convLSTM 0.789561 0.710296 0.661075
Ensemble 0.871661 0.788185 0.754425

2 Baseline 0.525052 0.356618 0.222105
LightGBM 0.781365 0.568037 0.447263
Simple convLSTM 0.704381 0.534503 0.351497
CNN 0.678212 0.523443 0.424356
Hierarch. convLSTM 0.660205 0.502952 0.406210
Ensemble 0.874733 0.607959 0.490638
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Figure 10. PR AUC for horizon 3 and class 2 over the testing period (2024-2025).

Figure 10 shows the PR AUC for the 3 months horizon 
and class 2 for all models, with the Ensemble model 
showing the highest PR AUC. 

Figures 11 to 13 summarize the geographic accuracy 
of the final model. They represent the weighted PR 
AUC for each grid over the testing period and for the 
1, 3, and 6 months horizons. The testing period has 
been selected to include the years 2024 to 2025. In 
the maps, the hue of the colour refers to different PR 
AUC levels, with the green colour indicating higher 
predictive accuracy, the orange colour medium 
accuracy, and red colour low accuracy. Different 
shades of the colours indicate displacement levels 
in the grid, with lighter colours corresponding to 
grids with lower displacement, darker colours to 
higher levels of displacement, and grids with dark 
colour and thick border representing areas of very 
high displacement, which are the most critical for 
humanitarian planning. 

Overall, we can see that the model works very well 
at correctly capturing areas of low risk of forced 
displacement and produces few false positives 
where no displacement occurs. The more challenging 
regions to predict are the ones with isolated higher 
levels of forced displacement, which is unsurprising. 

The highest levels of displacement over our testing 
period are observed in Burundi, parts of Sudan, South 
Sudan, Somalia, the Lake Chad region, and Mali. The 
model achieves particularly high accuracy in Burundi, 
DRC, and South Sudan where displacement tends to 
cluster spatially, and more historical data is available 
for training. In contrast, accuracy is lower in the Lake 
Chad basin parts of West Africa due to them being 
spatially isolated and having less historical data 
coverage for class 2 compared to Eastern Africa. 
As it is to be expected, prediction accuracy slightly 
decreases with longer time horizons.
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Figure 11 . Weighted PR AUC by grid over the testing period (2024-2025) for our selected model. Hue represents 
the metric, whereas colour depth refers to the level of forced displacement. Greener areas correspond to more 

accurate predictions and darker shades represent higher levels of displacement.

Figure 12 . Weighted PR AUC by grid over the testing period (2024-2025) for our selected model. Hue represents 
the metric, whereas colour depth refers to the level of forced displacement. Greener areas correspond to more 

accurate predictions and darker shades represent higher levels of displacement. 
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Figure 13. Weighted PR AUC by grid over the testing period (2024-2025) for our selected model. Hue represents 
the metric, whereas colour depth refers to the level of forced displacement. Greener areas correspond to more 

accurate predictions and darker shades represent higher levels of displacement. 

The superior performance of LightGBM for classes 
0 and 1 reflects its efficient handling of tabular 
features and ability to capture non-linear interactions 
between conflict indicators, climate variables, and 
socioeconomic factors without requiring extensive 
spatial modelling. The Ensemble model’s advantage 
for class 2 stems from its integration of spatial and 
temporal patterns through convolutional and LSTM 
components. Large displacement movements often 
exhibit spatial patterns and temporal acceleration 
that tree-based models cannot easily capture. By 
combining LightGBM’s feature-based predictions 
with deep learning’s spatiotemporal modelling, the 
Ensemble leverages complementary strengths. This 
architectural choice proves particularly valuable for 
the rare but critical events that are important for 
humanitarian resource allocation. 

Taken together, the results show the value of 
integrating tree-based and deep-learning approaches 
to achieve high accuracy in regions with severe class 
imbalance and complex spatiotemporal interactions 
between climate and conflict variables. LightGBM 
has been selected for regions which predominantly 
have displacement levels in classes 0 and 1, while 
the Ensemble model has been deployed in areas 
showing class 2 dynamics, where the increased 
complexity of our Ensemble model improves 
predictive performance while taking into account 
computational constraints. 
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Conclusion
This study represents a significant methodological 
advance in displacement forecasting by 
addressing a critical gap in the field: the mismatch 
between the spatial scales at which climate-
displacement relationships operate and the 
aggregated levels at which they are typically 
modelled. By developing a gridded forecasting 
framework at 0.5-degree resolution across 25 
African countries, we demonstrate that machine 
learning approaches can provide actionable early 
warning for forced displacement at the spatial 
granularity required to capture localized climate-
conflict-displacement dynamics.

This work makes several methodological 
contributions to displacement forecasting. We 
introduce a comprehensive spatial gridding 
approach that preserves both temporal granularity 
(monthly observations) and spatial precision 
(0.5-degree resolution) while integrating diverse 
data sources—from satellite imagery to conflict 
event databases to socioeconomic indicators. The 
180-variable feature set spanning geographic, 
demographic, environmental, conflict, political, and 
economic dimensions represents one of the most 
comprehensive covariate frameworks applied to 
displacement prediction at sub-national scales.

Our ensemble architecture, which combines the 
complementary strengths of tree-based feature 
learning and deep learning’s spatiotemporal pattern 
recognition, demonstrates how hybrid approaches 
can address the multiple scales and temporal 
dynamics inherent in displacement processes. The 
hierarchical ConvLSTM architecture, in particular, 
shows promise for capturing both local displacement 
triggers and regional displacement systems, though 
at increased computational cost that may limit real-
time deployment in resource-constrained settings.

However, several important limitations warrant 
acknowledgement. First, despite achieving 
operationally meaningful accuracy, our models 
struggle with the large displacement situations—

precisely the events of greatest humanitarian 
concern. The extreme rarity and inherent 
unpredictability of these events, combined with 
short spike durations (most lasting only 2-3 months), 
pose fundamental forecasting challenges that may 
require complementary approaches such as scenario 
analysis or qualitative expert assessment alongside 
quantitative prediction.

Second, our classification scheme, while operationally 
motivated, involves discretizing a continuous 
phenomenon in ways that may obscure important 
dynamics. The binning approach addresses statistical 
challenges posed by extreme skewness but sacrifices 
information about displacement magnitudes within 
categories. Future work should explore whether 
direct count regression, potentially with zero-inflated 
models or other approaches designed for rare events, 
can complement classification results.

Third, while our models capture correlations between 
environmental variables and displacement, they 
do not establish causal mechanisms. The “black 
box” nature of some deep learning components 
limits interpretability regarding how specific climate 
variables influence predictions. Future research 
should integrate causal inference frameworks 
and mechanistic understanding to improve our 
understanding of climate-displacement pathways.

As we approach an era where climate-influenced 
displacement may affect hundreds of millions of 
people, developing robust early warning systems 
represents both a moral imperative and a practical 
necessity. This study provides one methodological 
pathway toward that goal, demonstrating that with 
appropriate data, methods, and spatial resolution, 
we can begin to anticipate rather than simply react 
to forced displacement crises. The humanitarian 
community must now translate these technical 
capabilities into operational systems that can 
save lives, reduce suffering, and support more 
dignified responses to displacement in an era of 
climate change.
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