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ABSTRACT

We present a predictive modelling approach to estimate monthly forced displacement outflows at a 0.5-degree
grid-cell resolution across 25 African countries using data from UNHCR’s own refugee registration records. The
refugee records were spatially gridded on a consistent 0.5-degree grid-scale and combined with environmental,
conflict, demographic, and socio-economic covariates at the same resolution to create a comprehensive dataset
of displacement drivers with climate as a specific focus. The target variable presents significant statistical
challenges due to excess zeros, and infrequent, short-lived spikes with large displacement counts. These
challenging characteristics required the implementation of multiple classification algorithms for prediction.
Count patterns were analysed using tree-based models (lightGBM), convolutional neural networks (CNN), and
ConvLSTM architectures to handle spatial-temporal dependencies in the data. Results show good predictive
performance for low and medium counts, but difficulties in detecting large and acute displacement spikes.
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Introduction

Climate change is increasingly recognized as a
significant driver of forced displacement, operating
through its effects on conflict, economic shocks,

and food insecurity. As climate impacts intensify,
understanding and predicting climate-driven
displacement becomes essential to anticipate future
population displacements and enable more effective
humanitarian preparedness.

Early approaches to climate-driven displacement
prediction relied on simplistic assumptions about

linear cause-and-effect relationships between

climate hazards and population movements, often
focusing on mapping out hazards and assuming
complete displacement from affected areas without
taking adaptation measures into account. These
theoretical approaches generated broad, often
catastrophic, projections of future climate driven
mobility, but lacked the rigor and timeliness needed for
humanitarian planning. More recent research focused
on understanding how climate impacts intersect with
existing mobility systems, and affect the nature, volume
and direction of displacement flows. (see Schewel et
al., 2024, for an overview). In this context, recognizing
that climate change acts indirectly on pre-existing
migration systems, and is often not the proximate
cause for migration, researchers incorporate climate-
related indicators into migration and population models
to forecast climate-driven mobility.

However, several limitations characterizing the

field of climate-related displacement forecasting
remain, many of them related to data availability.

In particular, a lack of data on non-climate related
drivers of displacement such as social, political, and
economic factors, and insufficient frequency and
geographical disaggregation of displacement flows
data may hamper the understanding of the localized
mechanisms through which climate impacts actually
operate. Environmental stressors interact with local
conflict dynamics, economic conditions, and social
vulnerabilities in spatially heterogeneous ways that
national averages fail to capture adequately. Without
detecting climate-displacement relationships at the
scales where they operate, we may miss important
signals of environmentally influenced displacement.

This gap limits opportunities for early intervention and
anticipatory resource allocation, perpetuating reactive
humanitarian responses.

We attempt to address this gap by developing a
grid-based displacement forecasting framework

that operates at the more granular spatial scale.

Our approach combines high-resolution gridded
displacement data from UNHCR’s internal registration
database with advanced deep learning architectures
to predict forced displacement outflows at 0.5-degree
resolution across 25 Sub-Saharan African countries.
Building on insights from O’Loughlin et al. (2012), who
demonstrate that climate-conflict relationships only
becomes statistically detectable at fine spatial scales,
we apply this principle to displacement forecasting.
Since most forced displacement is conflict-driven

and climate-conflict links seem to operate mainly at
localized scales, displacement forecasting requires
similar spatial granularity to capture the environmental
drivers of population movements.

Our methodology integrates spatial-temporal
modelling through tree-based models (lightGBM),
convolutional neural networks, and ConvLSTM
architectures to handle the complex spatial
dependencies and temporal dynamics inherent in
displacement processes. Deep learning approaches
are particularly suited to this task because they

can capture non-linear relationships between
climate variables and displacement outcomes while
accounting for spatial autocorrelation and temporal
dependencies that traditional statistical methods
struggle to model. This framework enables monthly
displacement predictions up to six months in advance
on three operationally relevant scales: small-scale
movements (0-10 people), medium-scale events (11-
500 people) and large-scale crises (>500 people).

The remainder of this paper is organized as follows.
Section 2 gives a brief overview of the literature,

and section 3 describes data sources and the spatial
gridding methodology. Section 4 presents the
modelling framework and deep learning architectures.
Section 5 discusses the modelling results, and
Section 6 concludes.



Literature Overview

This paper is related to a number of different
literatures that contribute insights into the challenges
of anticipating forced displacement outflows.

Early quantitative work by Schmeidl (1997) used
pooled time-series analysis to identify structural
factors driving forced displacement from 1971-1990,
establishing that measures of generalized violence
and military interventions have high predictive
power of refugee outflows. This study, together with
the growing availability of violence indicators, was
instrumental to the pioneering paper by Schmeidl
and Jenkins (1998), which posited the feasibility

of applying Early Warning Models (EWMs) to the
prediction of humanitarian disasters such as large
refugee crises. Moore and Shellman (2004, 2006)
extended this foundational work by analysing forced
displacement from 1952 to 1995 and developing
frameworks to predict whether individuals would
become refugees or internally displaced persons.
These foundational studies demonstrated the
feasibility of data-driven prediction approaches,
while revealing the complexity of modelling forced
displacement. Evidence that violence serves as the
main push factor in the case of forced displacement
is also established by Moore and Shellman (2007),
while in a country case study, Ibdfiez and Velez
(2008) found that actual violent events, in addition
to perceptions of violence and a generalized lack

of security, were central determinants of forced
population movements in Colombia. These authors
also determined that modelling forced displacement
critically differs from traditional migration modelling in
that the threat of violence vastly increases the costs
of staying.

Recent methodological advances, such as machine
and deep learning approaches, have enabled
more sophisticated forecasting approaches
through improved computational methods and
data availability. Carammia et al. (2022) developed
adaptive machine learning algorithms to forecast
asylum applications to EU countries up to four
weeks ahead, integrating administrative statistics

with non-traditional data sources, including internet
searches and conflict event databases. Their
approach demonstrates that individual country-
to-country displacement flows could be modelled
accurately using dynamic variable selection methods.
Henningsen (2025) created country-level early
warning models using gradient boosting classification
to predict displacement flows and sudden increases
in movement, generating monthly risk indices for 176
countries with prediction horizons extending to six
months, reaching an accuracy level of over 80% to
predict sudden increases in displacement numbers.
Suleimenova et al. (2017) proposed agent-based
modelling approaches to predict refugee destinations
during conflicts, synthesizing data from UNHCR,
conflict databases, and mapping services to achieve
over 75% accuracy in forecasting camp destinations
across three major African conflicts. Finally,

Hoffmann Pham and Luengo-Oroz (2022) provided

a comprehensive methodological framework for
prediction of IDP and refugee flows, highlighting the
growing interest in machine learning applications
while noting the lack of standardized approaches to
structured prediction problems.

Another strand of literature this study relates to looks
at the empirical relationship between climate, conflict,
and displacement. In the most comprehensive

study so far, Burke, Hsiang and Miguel (2015)

use a hierarchical meta-analysis to estimate the

mean effect and quantify the degree of variability
across 55 studies on climate and conflict, and find
that deviations from moderate temperatures and
precipitation patterns systematically increase conflict
risk. Contemporaneous temperature has the largest
average impact, with each 1 standard deviation
increase in temperature increasing interpersonal
conflict by 2.4% and intergroup conflict by 11.3%. With
respect to the climate-migration axis, the conceptual
framework of Black et al. (2011), guides much of the
empirical work by stating that in addition to exercising
a direct influence, climate change indirectly affects
migration decisions by affecting other drivers of



migration. Indeed, some macro-level studies provide
support of the indirect effect of climatic factors on
international migration through reduction of crop
yields (Cai et al., 2016), and wage differentials
between origin and destination (Beine and Parsons,
2015). In a study that uses data from 115 countries
between 1960 and 2000 to analyse the effect of
differential warming trends across countries on the
probability of either migrating out of the country or
from rural to urban areas, Cattaneo and Peri (2016)
find increased migration with higher temperature

for middle-income countries, whilst migration is
suppressed in low-income countries. Additionally,
using a gravity model accounting for endogenous
selection, Abel et al. (2019) exploit bilateral data on
asylum seeking applications for 157 countries over the
period 2006-2015 to empirically establish the links
between climate change, conflict and migration. They
find that climatic conditions, by affecting drought
severity and the likelihood of armed conflict, played
a significant role as an explanatory factor for asylum
seeking in the period 2011-2015.

Finally, this work relates to a strand of literature
that assesses the phenomena at much finer level of
geographical granularity. Using a conflict database
that contains 16,359 individual geolocated violent
events for East Africa from 1990 to 2009, and
climate indicators at gridded 1° resolution (*100
km), O’ Loughlin et al. (2012) find that much warmer
than normal temperatures raise the risk of violence,

whereas average and cooler temperatures have no
effect. Similarly, Harari and La Ferrara (2018) conduct
a geographically disaggregated analysis of civil
conflict in Africa between 1997 and 2011 taking as
units of observation 110 x 110 km subnational “cells,”
and estimate the incidence of conflict as a function of
weather shocks and a number of other covariates in
both the cell and neighbouring areas. Using a model
that includes spatially and temporally autoregressive
terms to account for the fact that conflict may be
persistent over time and that both the covariates and
the presence of conflict may be correlated across
space, they find that a 1 standard deviation shock
during the growing season to the Standardized
Precipitation-Evapotranspiration Index (SPEI), which
considers the joint effects of precipitation, potential
evaporation, and temperature, is associated with a 1.3
percentage point increase in conflict likelihood in the
subsequent year, relative to the cell’s historic mean.

Despite evidence from climate-conflict research

that environmental effects on human behaviour
require fine spatial scales for detection, displacement
prediction continues to operate primarily at country
or regional levels. To the best of our knowledge,

the present study is the first to address this gap

by developing displacement forecasting using

a new gridded panel dataset with a rich set of
georeferenced covariates at the cell/year level.



Data

Data Sources

Our analysis uses forced displacement data from
the UNHCR’s PRIMES database , which contains
individual-level records of all refugees and asylum
seekers registered by UNHCR. The spatial gridding
methodology and data processing procedures for

converting these individual-level registration records

into gridded displacement outflows counts are
detailed in Wells et al. (2025). This approach enables
consistent spatial aggregation of displacement
events at 0.5-degree grid resolution while preserving
temporal granularity at the monthly level.

Spatial and Temporal Coverage

The data set covers monthly displacement data for
25 West, Central and East African countries' from
January 2010 to September 2025. This 15-year time
series provides 189 monthly observations for each
grid cell, creating a comprehensive spatial-temporal
dataset for displacement modelling.

The 0.5-degree grid resolution balances
computational feasibility with the spatial granularity
required to detect localized displacement patterns,
particularly those driven by environmental and

conflict factors operating at sub-national scales. The
geographic coverage includes major displacement-
affected regions across three African sub-regions,
capturing diverse conflict contexts, climate zones,
and socio-economic conditions. This spatial scope
enables the analysis of displacement patterns
across varied environmental and political contexts
while maintaining sufficient observations for
statistical modelling.

Target Variable Characteristics

The displacement data exhibits several challenging
statistical properties that significantly influence
modelling approaches. The distribution is
characterized by extreme right skewness, with most
cell/year observations recording zero displacement
counts. Of the 6221 grid cells, only 1,742 (28.0%)
have experienced at least some displacement and

of the total 1,175,769 observations in the dataset
(6,221 grid cells x 189 months), 1,063,920 (90.5%)
have displacement values of zero, while only 111,849 (
(9.5%) record one or more displaced persons.

To address these statistical challenges posed by

1 The 25 countries of focus include: Somalia, Eritrea, Ethiopia, Kenya, Tanzania, Burundi, Rwanda, Uganda, South Sudan, Sudan, Chad, Central
African Republic, Democratic Republic of the Congo, Angola, Cameroon, Nigeria, Niger, Benin, Togo, Ghana, Burkina Faso, Mali, Cote d’lvoire,
Senegal, and Mauritania.



the raw count data, we implement a three-category
classification scheme that aligns with operational
humanitarian response frameworks:

« Small-scale movements (0-10 people): Captures
minor displacement and population movements

+ Medium-scale events (11-500 people):
Represents significant displacement events
requiring humanitarian attention

« Large-scale crises (>500 people): Identifies
major displacement emergencies that may
require immediate large-scale response

This binning approach addresses the statistical
challenges of modelling highly skewed count data
while creating operationally meaningful categories
corresponding to different levels of humanitarian
response capacities.

Exploratory Data Analysis

The displacement data exhibit significant temporal
variation that reflects major conflict and political
events in the study region. Figure 1 shows the
average displacement count across all grid cells over
the 15-year study period, revealing several distinct
phases. Counts escalated from 2011 onward, with
average displacement counts reaching peaks of
nearly 30 persons per grid cell during 2014-2016,
corresponding to major conflicts in Mali, the Central
African Republic, South Sudan, and the Lake Chad

Average count across grids over time

30

Avera ge count

Basin. The average displacement spiked again in

late 2016 through 2017, reflecting increased conflict
in South Sudan. There was a decrease in average
displacement from 2018 to 2023, with a spike in
2023, reflecting the outbreak of the civil war in Sudan
and increased conflict in the border region between
Burkina Faso, Mali and Niger. The time series
demonstrates substantial volatility, with sharp spikes
followed by periods of relative stability, highlighting
the episodic nature of forced displacement events.
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2018 2020 2022 2024
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Figure 1. Average displacement per grid cell from 2000 to 2025.

The temporal dynamics of displacement events reveal
additional complexity beyond simple time series
patterns. Figure 2 shows the distribution of the top
ten grids by displacement counts over time, coloured
by country of origin. This visualization reveals the
episodic nature of major displacement events, which

is characterized by many large and sudden spikes in
the displacement figures. It is also noteworthy that 7
of the 10 grid cells with the most overall displacement
fall within 3 countries; Sudan, Democratic Republic of
the Congo, and South Sudan.



Monthly Displacement of Top 10 grids - Colored by Country
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Figure 2. Top ten grid cells by maximum peak over study period.

The duration characteristics of the displacement spikes
provide further insight into the temporal structure

of forced displacement events. Figure 3 displays

the distribution of the duration of the spikes in all
observations, where a spike is defined as a continuous
period of elevated displacement above the baseline
(monthly average level in the previous year).

The distribution shows that the majority of
displacement spikes are short-lived, with
approximately 10,000 events lasting only 1-3

months. The frequency drops for longer durations,
with fewer than 2,000 events lasting 4 months,

and few extending beyond 6 months. This pattern
suggests that most major displacement events are
acute responses to specific triggers rather than
sustained processes, although the small number of
longer-duration events may represent protracted
displacement situations requiring different analytical
and operational approaches.

Distribution of displacement spike durations
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Figure 3. Distribution of spike duration over all grid cells measured as significant
consecutive deviation from a grid’s baseline.
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Figure 4. Seasonality pattern of gridded forced displacement relevant to predict
forced displacement.

Figure 4 shows monthly displacement per grid
averaged over 5-year segments. The emerging pattern
shows that seasonality in displacement numbers

is increasing over time, with peak displacement
coinciding with the late dry season and early planting
period, when food stocks are lowest and competition
for resources is highest. This might indicate that
environmental factors are increasingly relevant to
predict forced displacement, as populations become
more vulnerable to seasonal stressors.

The spatial distribution of displacement events shows
clear geographical clustering that reflects conflict
patterns and refugee flow corridors. Figure 5 displays
the year of maximum displacement for each grid

cell from 2000 to 2025 in colour and the aggregate
displacement figure in the same year represented by
the bubble size. Lighter bubbles show grid cells that
have seen their highest year of displacement closer
to 2000 and darker ones experienced the highest
year of displacement more recently. Blank areas
represent grid cells that have never experienced

any displacement during this period. The colours

and sizes of the bubbles reflect the reality of when
and how many people were forced to leave certain
areas, mainly due to conflict. The lightest colours in
Angola reflect the displacement that occurred prior
to the end of the 27-year-long civil war in 2002.
Southern Somalia and Céte d’lvoire are a green-blue.
In Somalia, this reflects the formation of the extremist
group Al Shabaab in the 2006 and a civil war which
started in 2009. In Cbte d’Ivoire, this reflects the
outbreak of the Second Ivoirian Civil War in late-2010.
The bubbles in eastern Mali and Central African
Republic are slightly darker blue, representing the
displacement that took place at the outbreak of civil

wars in these countries, each in 2012. South Sudan
experienced its highest levels of displacement during
the civil war of 2014 to 2020, which is represented by
the darker bubbles. Finally, Burkina Faso, northwest
Nigeria, and Sudan all have dark bubbles, showing
that these grid cells experienced most displacement
in the last couple of years. Some of these bubbles are
very large, indicating the high levels of displacement
from certain grid cells, particularly in southwest
Burkina Faso, southern Sudan, and eastern Sudan. An
additional note is that some areas show a variation in
colouring. For instance, the Darfur region in western
Sudan has both light and dark coloured bubbles. This
reflects high levels of displacement due to the Darfur
Crisis in the early 2000s and the recent conflict
stemming from the Sudanese Civil War, since 2023.

We observed that displacement seems to be
clustered among grid cells in geographic proximity
and conducted a spatial autocorrelation analysis
using Moran’s | statistic to test this apparent

spatial pattern formally. This approach allows us to
quantify the degree of spatial clustering observed
in the displacement data and identify statistically
significant hotspots throughout the region. Our
analysis yields a global Moran’s | value of 0.1885
(k-nearest neighbours with k = 6), indicating a weak
but positive spatial autocorrelation in displacement
patterns. This suggests some tendency for similar
displacement values to cluster together, although the
effect is not particularly strong. Despite the modest
coefficient, the permutation test resulted in a p-sim
value of 0.001, confirming that this spatial pattern is
statistically significant and unlikely to have occurred
by chance alone.
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Figure 5. Year of the highest displacement count per grid cell.

The map in Figure 6 classifies each cell in the

grid according to its most common value of local
indicators of spatial association (LISA) over time,
categorizing them into four distinct patterns: high-
high, high-low, low-high, and low-low. The areas
marked as high-high (red) represent displacement
hotspots—locations with high displacement values
surrounded by neighbouring cells that exhibit high
displacement. These clusters are prominently visible
across coastal West Africa (including Nigeria, Burkina
Faso, Cote d’lvoire), Ethiopia, Somalia, and parts of
East Africa. In contrast, low-low clusters (light grey)
indicate areas where low displacement values are
spatially concentrated, visible in parts of Sudan,
South Sudan, and Central Africa. The high-low (pink)
and low-high (brown) designations represent spatial
outliers—areas where displacement values differ
markedly from their neighbours. These outliers
appear more sparsely distributed and often at the
borders of high-high clusters. The presence of

10

statistically significant spatial clustering reinforces our
methodological decision to incorporate spatial effects
in our predictive modelling approach.

These findings suggest that displacement is not
merely a function of localized environmental or
socio-political factors but is influenced by broader
regional dynamics and possible spillover effects from
neighbouring areas. ldentifying specific hotspots
provides valuable information to target preventive
interventions and humanitarian responses. The
clustering patterns align with known conflict zones
and regions of environmental stress. The high-high
clusters in the Horn of Africa correspond to areas
experiencing recurrent drought conditions and
long-lasting conflicts. In contrast, clusters in West
Africa coincide with regions of political instability
and temperature anomalies, providing some
evidence displacement patterns may reflect complex
interactions between environmental stressors and
socio-political factors.
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Figure 6. Most common LISA cluster type per grid cell over time.

Feature variables

Our modelling framework incorporates a Environmental
comprehensive set of 180 variables organised into
six thematic categories: environmental, geographic,
demographic, food security, socio-economic, political,
and conflict.

We use data based on four categories of
environmental variables in our model. These are

data on temperature, precipitation, vegetation,

and drought. The temperature data come from

three different sources: Climate Hazards InfraRed
Temperature with Stations (CHIRTS), which offers daily
temperature highs at 0.05° x 0.05° from 01 January
19802 Copernicus ERA-5-land post-processed daily-
statistics, which offers daily temperature highs at 0.10°

2 https://www.chc.ucsb.edu/data/chirtsdaily

1"


https://www.chc.ucsb.edu/data/chirtsdaily

x 0.10° from 01 January 1950%; and Berkeley Earth,
which offers monthly temperature averages at 0.25°
x 0.25° from January 1850%. The precipitation data
come from two sources: Climate Hazards InfraRed
Precipitation with Stations (CHIRPS), which offers
hourly precipitation total at 0.05° x 0.05° from 01
January 1981%; and Copernicus ERA-5, which offers
hourly precipitation measurements at 0.10° x 0.10°
from 01 January 1950. Vegetation is measured
through the Normalized Difference Vegetation Index
(NDVI), which approximates the level of vegetation
at a point in time through satellite data. We use NDVI
data from NASA, which offers monthly averages at
0.05° x 0.05° from January 200068. Drought levels are
measured through the Standardized Precipitation
Evapotranspiration Index (SPEI), which is an index
used to approximate the level of dryness and drought
at a point in time. Data are extracted from the SPEI
Global Drought Monitor, which offers monthly SPEI
averages at 1.00° x 1.00° from January 19507

Geographic

We use four different types of geographic or
resource variables, which include landcover, agro-
ecological zone, elevation, river presence, road
presence, and market access. The landcover data are
extracted at 0.05° x 0.05° resolution point locations
from Copernicus. The data are categorized into
8 general types: tree cover, bare area, shrubland,
cropland, grassland, urban, cover flooded and water®.
Additionally, urban areas are categorized through data
from Natural Earth®. Identifying grid cells classified as
urban, we developed a variable that measures the
distance from each grid cell to the nearest urban grid

cell. Agro-ecological zone (AEZ) data are extracted
from the International Food Policy Research Institute,
which are coordinate polygons of the various zones.
AEZ classifications for Africa have three dimensions:
major climate zones (tropics or subtropics), moisture
zones (water availability) and highland/lowland (warm
or cool based on elevation)™. Elevation data come
from the HarvestChoice CELL5M Database. The data
give the elevation, in meters, at coordinate points
at a resolution of 5 arc minutes (approximately 9.30
km)". The geographic presence of a river is based on
data from Natural Earth, which offers the coordinate
geometries of rivers'™. Road presence is based on data
from Humanitarian OpenStreetMap. Each grid cell is
labelled based on the presence of at least some of the
grid cell area encompassing a paved road or unpaved
road, if neither of these are present, then the grid cell
is labelled as no-road™.

Demographic

Demographic data used for the models are predicted
population and ethnic composition of each grid cell.
Predicted population is based on LandScan annual
population data' along with monthly DMSP* and
VIIRS nightlight data. The annual population and
nightlight data are used to predict monthly population
within each grid cell. Ethnic group location data are
extracted from ETH Zurich, which are coordinate
polygons of the boundaries between ethnic groups™.
In order to account for Somali clan boundaries,
SWALIM data'™ on Somali clan locations are used.
Based on the ethnic classification of each grid cell,
we created a variable to measures the distance to the
nearest grid cell of a different ethnic classification.

https://cds.climate.copernicus.eu/datasets/derived-era5-land-daily-statistics?tab=overview

https://berkeleyearth.org/data/
https://www.chc.ucsb.edu/data/chirps

https://www.earthdata.nasa.gov/topics/land-surface/normalized-difference-vegetation-index-ndvi

https://spei.csic.es/map/maps.html#months=1#month=8#year=2025

https://land.copernicus.eu/en/products/global-dynamic-land-cover/land-cover-2020-raster-10-m-global-annual

OWONOUh_W I

https://github.com/nvkelso/natural-earth-vector/blob/master/50m_cultural/ne_50m_urban_areas.shx

10 https://dataverse.harvard.edu/dataset.xhtm|?persistentld=doi:10.7910/DVN/HJYYTI

" https://dataverse.harvard.edu/dataset.xhtm|?persistentld=doi:10.7910/DVN/G4TBLF

12 https://github.com/nvkelso/natural-earth-vector/blob/master/10m_physical/ne_10m_rivers_lake_centerlines.shp

13 https://data.humdata.org/dataset/hotosm_ago_roads
14 https://landscan.ornl.gov/

15 https://eogdata.mines.edu/wwwdata/dmsp/monthly_composites/

16 https://eogdata.mines.edu/nighttime_light/monthly_notile/
17 https://icr.ethz.ch/data/epr/core/
18 https://spatial.faoswalim.org/
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https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/G4TBLF
https://github.com/nvkelso/natural-earth-vector/blob/master/10m_physical/ne_10m_rivers_lake_centerlines.shp
https://data.humdata.org/dataset/hotosm_ago_roads
https://landscan.ornl.gov/
https://eogdata.mines.edu/wwwdata/dmsp/monthly_composites/
https://eogdata.mines.edu/nighttime_light/monthly_notile/
https://icr.ethz.ch/data/epr/core/
https://spatial.faoswalim.org/

Food security

The food security classification of a grid cell on a
monthly basis is based on FEWS NET data, which is
released every three months with the data on the food
security situation in subnational areas for the current
month, predicted over the next three months, and four
to six months into the future™. Certain countries are
not included in the FEWS NET data, grid cells in these
countries are imputed with a food security rating based
on nearest neighbour imputation.

Socio-economic

Child health variables can offer an indication of

the overall wellbeing of the population within a

grid cell. These variables, infant mortality rate and
child malnutrition rate, are extracted from the PRIO-
GRID dataset. These variables are gridded to 0.5°
resolution and are time-invariant, reflecting the values
of the respective variables for the year 2000%°. In
order to approximate market access, data from the
International Food Policy Research Institute are used
to label each grid cell with the average time in hours
to the nearest market within towns of various size:
20,000, 50,000, 100,000, 250,000 and 500,000.

To capture overall accessibility to markets of varying
sizes, we constructed a composite indicator called
the Market Accessibility Index (MAI). Each travel-

time variable was first weighted inversely by the
corresponding population size, giving greater
emphasis to accessibility to markets in larger urban
centres. Specifically, MAI was calculated as the sum of
each travel time divided by the respective population
scale. The resulting index was log-transformed

to reduce skewness and then normalized using
min—max scaling to a O—1range. Finally, the scale
was inverted so that higher MAI values represent
greater accessibility (i.e., shorter travel times to larger
towns and cities), while lower values indicate poorer
accessibility.

To account for inequality within grid cells, a time-invariant
Gini coefficient was calculated by gridding WorldPop
data?' from 2020 and VIIRS nightlight radiance data,
averaged over the year 2020. These variables were
placed inside 0.02° grid cell. The mean population within

—

19 https://fews.net/data/acute-food-insecurity
20 https://grid.prio.org/#/download

21 https://www.worldpop.org/

22 https://fragilestatesindex.org/global-data/
23  https://acleddata.com/
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these 0.02° grid cells was used along with the 2020
nightlight intensity data to estimate nightlight per capita
at the 0.02° grid cell-level. The nightlight per capita of
each 0.02° grid cell is used to estimate the inequality
(Gini index) within each grid cell.

Political

To account for the political system and quality of
governance that people experience, we use data from
the Fragile States Index?2. These variables include
group grievance, which quantifies the divisions

and schisms between different groups; economic
inequality; public services; human rights; security
apparatus; and fractionalized elites, which quantifies
the fragmentation of state institutions along ethnic,
class, clan, racial, or religious lines. The fragility
variable is a composite of the previous variables.
These indicators are annual and at the national level,
so all grid cells in a country and in the same year
carry the same value for each individual indicator.

Conflict

Conflict data used for this project is extracted from
the Armed Conflict Location & Event Data (ACLED),
which offers daily data on conflict events with geo-
coordinated point locations of each conflict event as
well as a description of each event?®. The descriptions
of each event include information on the actors
involved, number of fatalities, whether civilians were
targeted, a categorization of each actor involved
(as state forces, rebel group, political militia, identity
militia, civilians, etc.), and the type of event (battle,
protest, riot, strategic development, etc.). Based on the
date and geo-point location of conflict events, data are
aggregated into grid cells on the monthly basis. We
focus on the number of events and conflict fatalities in
each grid cell in each month. We also count the number
of conflict events and fatalities in neighbouring grid
cells to account for nearby violence that might drive
people to become displaced.

Table 1 provides a detailed breakdown of these
variables, including their temporal and spatial
resolutions, as well as data sources.


https://fews.net/data/acute-food-insecurity
https://grid.prio.org/#/download
https://www.worldpop.org/
https://fragilestatesindex.org/global-data/
https://acleddata.com/

Variable type

Climate variables

Source

Temperature

Daily, 0.05°
Daily, 010°
Monthly, 0.25°

CHIRTS
Copernicus ERA-5
Berkeley Earth

Precipitation

Daily, 0.05°
Daily, 0.10°

CHIRPS
Copernicus ERA-5

Normalized Difference Vegetation Index

Monthly, 0.05°

NASA

Standardized Precipitation
Evapotranspiration Index

Resource and geographic variables

Monthly, 1.00°

SPEI Global Drought Monitor

Landcover

Constant, 0.05°

Copernicus
Natural Earth

Agro-ecological zone

Constant, defined regions

International Food Policy
Research Institute

Elevation Constant, 0.10° HarvestChoice CELL5M
River Constant, defined regions | Natural Earth
Road Constant, defined regions | Humanitarian OpenStreetMap

Market access

Demographic variables

Constant, 0.10°

International Food Policy
Research Institute

Population density

Monthly, 0.10°

LandScan, DMSP, VIIRS

Ethnicity

Constant, 0.10°

ETH Zurich
SWALIM

Food security variables

Food security

Monthly, 0.10°

FEWS NET

Socio-economic and wellbeing variables

Child health

Monthly, 0.50°

PRIO

Market access

Constant, 010°

International Food Policy
Research Institute

Gini

Political variables

Monthly, 0.10°

WorldPop, VIIRS

Fragility

Annual, national

Fragile States Index

Conflict variables

Conflict events and fatalities

Daily, geo-point locations

ACLED



Methodology

We develop a classification model for the three framework; a baseline model, a tree-based method,
categories of forced displacement defined in section three different types of neural network architectures,
3 (low, medium, and high) across three predictive and combine them in an Ensemble model. To
horizons of one, three, and six months. We evaluate maximize performance, we train a separate model for
five different types of classification models in our each predictive horizon.

Baseline Model

The baseline model is a simple naive model, tends to perform surprisingly well in many real-world
where the last available observation is used as the scenarios, particularly in slowly changing or persisting
prediction for all three horizons. The naive model situations over short-time horizons.

Table 1. Variables used by model type.

Variable CNN/ConvLSTM/2-stage convLSTM (3 models) LightGBM
Core conflict variables

conflict_events v v
conflict_fatalities v v
new_event v v
new_event_decay v

Geographic variables

v v

dist_urban
border_dist

Climate variables

<
<

high_temperature

heavy_precipitation

high_temperature_accumulated v

heavy_precipitation_accumulated v

AR YR YRR

drought_accumulated v

Socioeconomic variables

|

<

Population

Fragility

<

Food security

|

Temporal features

count (lag1-12)

count rolling average

min rolling average

AN R YRYRS

max rolling average
Other variables

All base variables v
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Tree-based Models

We use LightGBM, which has been selected for its
computational efficiency and low memory usage,
which is particularly important given the size of

our dataset (Ke et al., 2017). LightGBM has shown
strong performance in time series forecasting tasks
(Makridakis et al., 2022) and is also well suited to
handle high-dimensional data, due to its built-in
feature selection via split gain to keep the most
relevant variables. To account for the temporal aspect
of our data, we included the lagged response variable
of up to 12 months along with engineered features

such as exponentially weighted moving averages.
After testing different subsets of variables, the final
LightGBM model was selected to use a subset of
the main 113 feature variables mentioned above,
combined with temporal features. The model’s
inherent feature selection was particularly important
in identifying key climate and environmental
predictors. Extensive testing showed that including
environmental variables improved the model’s
accuracy, showing the importance of incorporating
climate data into our framework.

Mean temp. anomaly for last 10 years from 1950-79 temp. baseline

Long-term temp. anomaly from 1950-79 temp. baseline

Number of months since precipitation peak

Number of months since NDVI peak

Number of months since primary precipitation peak

Average max. precip. for last 6 months

Number of high temp. days in month prior to NVDI peak month

Accumulated days of heavy precipitation (prev. 7-years)

Number of months since primary NVDI peak

Maximum daily pricipitation within month

Note: NDVI peak month is based on the average NDVI from 2000-2010

High
[
=]
©
>
()
o
i
2
©
()
|8

Low

-2 =il 0 1

SHAP value (impact on model output)

Figure 7. SHAP importance of top 10 climate variables for class 2 prediction (6-month horizon LightGBM model).
Dots show individual data point predictions; colour represents feature value.

Figure 7 presents the top 10 climate variables

ranked by the highest average impact on the model
predictions for the LightGBM model predicting 6
months ahead. The x-axis represents the SHAP value
— a measure that quantifies a feature’s contribution
to a specific prediction. The y-axis displays the
features, with each dot signifying the SHAP value of
a particular feature for a given data point. The colour
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of the dot represents the associated feature value
from low (blue) to high (red), allowing to gauge the
extent of each feature’s contribution to the prediction.
For example, the number of high temperature days

in the month prior to the NDVI peak month shows
that higher values are associated with positive SHAP
values increasing the likelihood of class 2 predictions.



Neural networks

The three neural networks that we employ are

a simple convolutional neural network (CNN), a
convolutional LSTM with a simple architecture,

and a hierarchical convolutional LSTM. Due to
dimensionality issues in spatial deep learning (Tomaso
Poggio, 2018) the CNN and ConvLSTM models
employ a focused set of 11 core variables which were
selected using SHAP values from the final LightGBM
model which include the most important identified
climate, conflict, and socioeconomic variables as
displayed in Table 1.

Convolutional Neural
Network (CNN)

The 3D CNN processes spatiotemporal sequences
using stacked 3D convolutional layers that jointly
capture temporal and spatial dependencies. The idea
is to have changing kernel sizes for our temporal fields
to capture short- and long-term temporal patterns.

CNNs have been widely used in the context of
spatiotemporal modelling, especially in the context
of flood predictions, where they have demonstrated
the ability to capture large- and small-scale spatial
patterns well (Yan et al., 2022). Furthermore, another
advantage of 3D CNNs is that they process space
and time simultaneously rather than sequentially,
which helps to preserve spatio-temporal correlations
throughout the network.

The network processes the information through
5-dimensional tensors that encode spatiotemporal
information in the standard format: [batch size,
sequence length, channels, height, width] (Chollet
& Watson, 2025). This format is typically used for
video sequences. In our case, this can be seen as

a sequence of multi-channel spatial frames over
time, where each frame represents the geospatial
data at a specific point in time. Each tensor contains
80 consecutive time points as input, followed by
the target displacement category at the specified
forecast horizon. The height and width dimensions
of the tensor refer to the spatial information, with
the original 0.5° grids mapped to cells within the
tensor grid. Adjacent cells in the original geographic
grid are assigned adjacent positions in the height
and width dimensions of the tensor, preserving
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spatial relationships and allowing the models to
learn from spatial dependencies. The channel
dimension refers to the number of feature variables,
such as geographic and climate variables, plus

the response variable. The batch size determines
how many complete sequences can be processed
simultaneously during training.

The model employs a rolling-origin cross validation
approach for training and optimization across
different predictive horizons. This approach is
essential for time series forecasting as it mimics real-
world scenarios by respecting the temporal nature of
the data. The tensors are created according to this
sliding-window approach, where each tensor is built
using the specified consecutive time points as input
and the target displacement category at the specified
forecast horizon. The origin then rolls forward through
time by one step and new tensors are created. The
number of training samples depends on the length of
the time series and the step size.

The architecture of the CNN consists of three
convolutional layers followed by a projection layer.
The first 3D convolutional layer uses a kernel size

of (12,3,3), over the temporal and spatial dimensions
with 16 output channels and applied padding to
preserve resolution. After convolution, we apply
batch normalization to stabilize training, ReLU
activation to introduce nonlinearity, and a 3D dropout
rate of 20% to prevent overfitting. The second 3D
convolutional layer increases the temporal kernel
size to (24, 3, 3) to enable the model to capture
longer-range temporal patterns and expand the
feature space to 32 channels. Again, we apply batch
normalization, ReLU and dropout at the end. As a
third convolutional layer, we have a feature interaction
layer which uses a smaller kernel size of (3,3,3). This
has been introduced as a layer to learn more complex
interactions between the features it has already
extracted. After the convolutional blocks, the model
extracts the last time slice from the feature map, and
a 1x1x1 projection layer produces the final spatial
prediction for our three classes.

Training employs a weighted Cross Entropy loss
function where the weight for the minority class 2 is
treated as a hyperparameter. The model undergoes



hyperparameter optimization over the weight of the It is implemented through a ConvLSTM cell by
minority class, learning rates, number of epochs, integrating 2D convolutional layers with the memory
batch size using a simple grid search. mechanism of LSTMs (input, forget, cell, and
output gates) to preserve spatial information while
enabling temporal memory. Unlike 3D CNNs which

Convolutional Long Short process fixed temporal windows, ConvLSTM uses
Term Memory (COHVLSTM) gating r.necharnsms, WhICh allow us to selectively

determine which past information to remember and
We use a simple convolutional LSTM, which was forget. The sequential processing approach allows
inspired by Shi et al. (2015) to perform a sequence- variable-length sequences without the computational
to-frame prediction which has been shown to be overhead of convolutions, facilitating the use of long
stable and powerful in capturing the temporal temporal sequences.

and spatial information encoded in a data set.

Class predictions
[B,3,H, W]

1x1 convolutional

layer (Projection)

o o tanh o i

Forget gate Input gate Cell gate Out gate i h ¢
h 2D conv 2D conv 2D conv 2D conv ‘

t—1 T

A 4

GroupNorm layer

2D convolutional
layer

Input data
5-dimensional
tensor

Figure 8. Architecture of the convLSTM model. o refers to sigmoid activation and tanh refers to hyperbolic
tangent. The circles refer to element-wise multiplication or addition.
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Pre-processing

Stacking data into

. 0.5°grids and scalin
Raw Geospatial Data &n g

Climate variables
Aﬁ Geographic variables

Modelled
01 Geospatial
10 Data

Tensor creation

i

(Batch, Time, Channels, Height, Width)

e Temporal sequences
e Spatial grid structure
o Features in channels

5D tensor
creation

Following a rolling origin cross
validation approach:

Build convLSTM

Bayesian Hyperparameter Optimization:
o Number of epochs
e Learning rate

o Kemel size

e convLSTM network
e integrating spatiotemporal
information

Model Output
e Optimised convLSTM on gridded geospatial data

Figure 9. Framework of neural
network methodology.
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Again, we used up to 80 time points to capture long-
range temporal dependencies. As with the CNN, the
data are represented and processed as 5-dimensional
tensors (batch, time, channels, height, width) which
encode the spatiotemporal information and follow

a cross-validation technique. The architecture
consists of a single 2D convolutional layer and a
GroupNorm layer that processes the concatenated
input and hidden state. The input data set is
processed sequentially through the convLSTM cell.
At each timestep, the current input is concatenated
with the previous hidden state and fed through the
convolutional layer followed by the normalisation
layer, producing features that are split into four sets
of channels. The outputs are then split and fed into
the four LSTM gates (input, forget, cell, and output
gates) with sigmoid activations for the input, forget,
and output gates, and tanh activation for the cell gate.
The gates selectively decide which spatiotemporal
information to retain in the cell state and which to
discard. Unlike traditional LSTMs, this network is
constructed so that the spatial structure is preserved
through convolutions rather than fully connected
layers, maintaining spatial resolution throughout the
temporal sequence processing. After processing all
timesteps, a 1x1 convolutional projection layer maps
the learned spatio-temporal features to the final
class-specific spatial prediction map for sequence-
to-frame tasks.

Hierarchical convLSTM

The simple convolutional LSTM is then further extended
through a hierarchical encoder-decoder architecture
that captures local and global spatiotemporal patterns,
following the approach of Shi et al. (2015). The encoder
consists of two sequential ConvLSTM cells. The first cell
extracts local spatiotemporal features maintaining the
base number of hidden channels. These local features
are then passed to the second cell processes, which
learn more global spatiotemporal patterns, which is
done by doubling the hidden channel size to allow for
increased complexity. Each stage processes the full
temporal sequence, with stage 2 taking the hidden state
outputs from stage 1 as its inputs, allowing the network
to build hierarchical spatiotemporal representations.



A final 1x1 convolutional projection layer maps the
decoder’s output to class-specific spatial predictions.
The architecture implements several design

choices to improve performance and flexibility.

Each ConvLSTM cell includes adaptive GroupNorm
layers that dynamically adjust the number of groups
(ranging from 1to 32) based on the channel count to
ensure numerical stability. The progressive channel
expansion from the base hidden channels in Stage
1to double in Stage 2, followed by contraction back
to the base size in the decoder, creates a bottleneck
architecture that forces the network to learn
compressed global representations. In particular,
each ConvLSTM cell generates class predictions

at each time step through internal projection layers
of 1x1, enabling possible intermediate supervision,

Ensemble model

To exploit the strengths of different model
architectures, we implement a weighted ensemble
approach over all classification models. The
ensemble weights are optimized on the validation set.
For each forecast horizon and current displacement
level, we determine the optimal linear combination
of model predictions that minimize the average F1
score. To ensure that forecasts remain accurate and
reliable, models are re-trained every three months
incorporating the latest data and trends, and the
ensemble temporally adjusts weights according to
the models’ predictive performance. This regular
updating allows the system to adapt to changing
conditions on the ground and maintain its usefulness
in humanitarian planning.
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although only the final output of the decoder is used
for the final prediction. The decoder’s efficiency

is enhanced by processing only a single timestep
rather than the full sequence, reducing computational
cost while maintaining the benefits of hierarchical
feature integration.

The decoder then combines the two scales of
information through a fusion mechanism. This
hierarchical approach basically enables specialized
learning of local and global spatial patterns, which
are then integrated to produce more accurate
predictions. The architecture should provide superior
spatiotemporal modelling compared to single-

stage approaches, with the trade-off of increased
computational cost.



Results

Each method is used to develop predictive models for
the three crises classes defined above. We use the F1,
and PR AUC scores for all classes to evaluate model
performance. The F1score is a harmonic average of
the precision and recall metrics, calculated separately
for each class:

. . *
precision*recall
Fi1 = 2*

precision + recall

The harmonic average ensures that both metrics
must be reasonably high for a good F1 score. We
complement this with the PR AUC score for a
probability-based metric which is also particularly
suitable for class imbalance. The PR AUC summarizes
the precision-recall trade off and ranges from O to 1,
with higher values indicating better performance.

Our analysis shows that Ensemble modelling
approaches show high predictive performance for
displacement levels across all forecast horizons, with
particularly interesting results for high displacement
events. The LightGBM model achieves highest overall
accuracy with a PR AUC of at least 0.64 for the 6
months horizon, while the Ensemble approach is better
at capturing the most critical class 2 events. Even at 6
months into the future, the Ensemble model achieves
a PR AUC of 0.50 for class 2, representing large-scale
displacement events that account for less than 0.3%
of the overall dataset. Table 2 below presents the
detailed evaluation approach including results across
all models, forecast horizons, and countries.

Table 2. Precision-Recall AUC per model and predictive horizon.

Horizon (months) Model PR AUC F1

Baseline 0.87188 0.989252
LightGBM 0.999654 0.990196
Simple convLSTM 0.999227 0.982280

! CNN 0.998685 0.825868
Hierarch. convLSTM 0.998400 0.979131
Ensemble 0.999571 0.988363
Baseline 0.587037 0.756006
LightGBM 0.848264 0.780281
Simple convLSTM 0.773426 0.694041

3 CNN 0714724 0.655764
Hierarch. convLSTM 0.755635 0.728660
Ensemble 0.838713 0.757251
Baseline 0.435189 0.652512
LightGBM 0.644033 0.598180
Simple convLSTM 0.622529 0.589392

° CNN 0.609971 0.560585
Hierarch. convLSTM 0.604661 0.642479
Ensemble 0.699143 0.666627




Overall, model performance displayed in Table 2
shows that the LightGBM, followed by the Ensemble
model, achieves the highest accuracy across all
predictive horizons. Even at horizon 6, the PR AUC
and F1 score remain relatively high. However, these
aggregated metrics mask class-specific patterns,
particularly for class 2, which represents less than
0.3% of observations but constitutes the most
important prediction target.

Class-specific metrics in Table 3 show distinct
modelling strengths. All models demonstrate
consistently strong performance in predicting

the majority class (class 0) with PR AUC scores
exceeding 0.99 and negligible differences
between modelling approaches. This reflects

the prevalence of this class and the ability of the
model to identify stable regions. Class 1, which
represents moderate and ongoing displacement,
is best predicted by the LightGBM model across all
horizons, using the main environmental, geographic,
conflict, and socioeconomic variables to capture
non-linear dynamics.

Class 2 represents the most complex and important
displacement dynamics, characterized by rare and
volatile events which makes them difficult to forecast.
The ensemble model performs best at capturing this

class for all horizons, showing its strength in leveraging
different models. As expected, the metrics for class

2 are lower than the ones for class 1 but are still
substantially higher compared to the Baseline model.
Performance degradation is also low across longer
predictive horizons for classes 0 and 1, while it is slightly
more pronounced for class 2. This pattern is expected
as class O represents most of the observations in the
dataset and stable situations and class 2 represents
volatile events which are more difficult to forecast over
extended periods.

Testing different variable subsets also showed the
importance of including climate variables into our
framework. Including them improved the PR AUC score
for class 2 by up to 5% mainly in East and West Africa,
showing how critical they are for the most important
class. Feature importance analysis also showed that
they were among the top predictors across horizons 3
and 6for class 2 and class 1. This highlights that climate
variables are not only supplementary features but
important components for understanding displacement
risk, particularly for the most severe humanitarian crises.

Based on these results, our final prediction model is a
hybrid approach where we use LightGBM for classes
0 and 1, and the Ensemble model for class 2 as our
final model.

Table 3. Under Curve (PR-AUC) by displacement class and forecast horizons. Best values are in bold, second-

best are underlined.

Class Model 1 Month 3 Months 6 Months
0 Baseline 0.991458 0.991339 0.991797
LightGBM 0.999728 0.999664 0.999600
Simple convLSTM 0.999388 0.999090 0.998210
CNN 0.999415 0.998260 0.999195
Hierarch. convLSTM 0.998337 0.998489 0.998799
Ensemble 0.999729 0.999537 0.999496
1 Baseline 0.613626 0.549013 0.496395
LightGBM 0.882590 0.822296 0.770439
Simple convLSTM 0.804354 0.656441 0.620376
CNN 0.819927 0.747606 0.655166
Hierarch. convLSTM 0.789561 0.710296 0.661075
Ensemble 0.871661 0.788185 0.754425
2 Baseline 0.525052 0.356618 0.222105
LightGBM 0.781365 0.568037 0.447263
Simple convLSTM 0.704381 0.534503 0.351497
CNN 0.678212 0.523443 0.424356
Hierarch. convLSTM 0.660205 0.502952 0.406210
Ensemble 0.874733 0.607959 0.490638
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Precision - recall curve for class 2
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Figure 10. PR AUC for horizon 3 and class 2 over the testing period (2024-2025).

Figure 10 shows the PR AUC for the 3 months horizon
and class 2 for all models, with the Ensemble model
showing the highest PR AUC.

Figures 11 to 13 summarize the geographic accuracy
of the final model. They represent the weighted PR
AUC for each grid over the testing period and for the
1, 3, and 6 months horizons. The testing period has
been selected to include the years 2024 to 2025. In
the maps, the hue of the colour refers to different PR
AUC levels, with the green colour indicating higher
predictive accuracy, the orange colour medium
accuracy, and red colour low accuracy. Different
shades of the colours indicate displacement levels
in the grid, with lighter colours corresponding to
grids with lower displacement, darker colours to
higher levels of displacement, and grids with dark
colour and thick border representing areas of very
high displacement, which are the most critical for
humanitarian planning.
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Overall, we can see that the model works very well

at correctly capturing areas of low risk of forced
displacement and produces few false positives
where no displacement occurs. The more challenging
regions to predict are the ones with isolated higher
levels of forced displacement, which is unsurprising.

The highest levels of displacement over our testing
period are observed in Burundi, parts of Sudan, South
Sudan, Somalia, the Lake Chad region, and Mali. The
model achieves particularly high accuracy in Burundi,
DRC, and South Sudan where displacement tends to
cluster spatially, and more historical data is available
for training. In contrast, accuracy is lower in the Lake
Chad basin parts of West Africa due to them being
spatially isolated and having less historical data
coverage for class 2 compared to Eastern Africa.

As it is to be expected, prediction accuracy slightly
decreases with longer time horizons.



Figure 11. Weighted PR AUC by grid over the testing period (2024-2025) for our selected model. Hue represents
the metric, whereas colour depth refers to the level of forced displacement. Greener areas correspond to more
accurate predictions and darker shades represent higher levels of displacement.

Figure 12 . Weighted PR AUC by grid over the testing period (2024-2025) for our selected model. Hue represents
the metric, whereas colour depth refers to the level of forced displacement. Greener areas correspond to more
accurate predictions and darker shades represent higher levels of displacement.
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Figure 13. Weighted PR AUC by grid over the testing period (2024-2025) for our selected model. Hue represents
the metric, whereas colour depth refers to the level of forced displacement. Greener areas correspond to more
accurate predictions and darker shades represent higher levels of displacement.

The superior performance of LightGBM for classes
0 and 1 reflects its efficient handling of tabular
features and ability to capture non-linear interactions
between conflict indicators, climate variables, and
socioeconomic factors without requiring extensive
spatial modelling. The Ensemble model’s advantage
for class 2 stems from its integration of spatial and
temporal patterns through convolutional and LSTM
components. Large displacement movements often
exhibit spatial patterns and temporal acceleration
that tree-based models cannot easily capture. By
combining LightGBM'’s feature-based predictions
with deep learning’s spatiotemporal modelling, the
Ensemble leverages complementary strengths. This
architectural choice proves particularly valuable for
the rare but critical events that are important for
humanitarian resource allocation.
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Taken together, the results show the value of
integrating tree-based and deep-learning approaches
to achieve high accuracy in regions with severe class
imbalance and complex spatiotemporal interactions
between climate and conflict variables. LightGBM
has been selected for regions which predominantly
have displacement levels in classes O and 1, while
the Ensemble model has been deployed in areas
showing class 2 dynamics, where the increased
complexity of our Ensemble model improves
predictive performance while taking into account
computational constraints.



Conclusion

This study represents a significant methodological
advance in displacement forecasting by
addressing a critical gap in the field: the mismatch
between the spatial scales at which climate-
displacement relationships operate and the
aggregated levels at which they are typically
modelled. By developing a gridded forecasting
framework at 0.5-degree resolution across 25
African countries, we demonstrate that machine
learning approaches can provide actionable early
warning for forced displacement at the spatial
granularity required to capture localized climate-
conflict-displacement dynamics.

This work makes several methodological
contributions to displacement forecasting. We
introduce a comprehensive spatial gridding
approach that preserves both temporal granularity
(monthly observations) and spatial precision
(0.5-degree resolution) while integrating diverse
data sources—from satellite imagery to conflict
event databases to socioeconomic indicators. The
180-variable feature set spanning geographic,
demographic, environmental, conflict, political, and
economic dimensions represents one of the most
comprehensive covariate frameworks applied to
displacement prediction at sub-national scales.

Our ensemble architecture, which combines the
complementary strengths of tree-based feature
learning and deep learning’s spatiotemporal pattern
recognition, demonstrates how hybrid approaches
can address the multiple scales and temporal
dynamics inherent in displacement processes. The
hierarchical ConvLSTM architecture, in particular,
shows promise for capturing both local displacement
triggers and regional displacement systems, though
at increased computational cost that may limit real-
time deployment in resource-constrained settings.

However, several important limitations warrant
acknowledgement. First, despite achieving
operationally meaningful accuracy, our models
struggle with the large displacement situations—

precisely the events of greatest humanitarian
concern. The extreme rarity and inherent
unpredictability of these events, combined with

short spike durations (most lasting only 2-3 months),
pose fundamental forecasting challenges that may
require complementary approaches such as scenario
analysis or qualitative expert assessment alongside
quantitative prediction.

Second, our classification scheme, while operationally
motivated, involves discretizing a continuous
phenomenon in ways that may obscure important
dynamics. The binning approach addresses statistical
challenges posed by extreme skewness but sacrifices
information about displacement magnitudes within
categories. Future work should explore whether
direct count regression, potentially with zero-inflated
models or other approaches designed for rare events,
can complement classification results.

Third, while our models capture correlations between
environmental variables and displacement, they

do not establish causal mechanisms. The “black

box” nature of some deep learning components
limits interpretability regarding how specific climate
variables influence predictions. Future research
should integrate causal inference frameworks

and mechanistic understanding to improve our
understanding of climate-displacement pathways.

As we approach an era where climate-influenced
displacement may affect hundreds of millions of
people, developing robust early warning systems
represents both a moral imperative and a practical
necessity. This study provides one methodological
pathway toward that goal, demonstrating that with
appropriate data, methods, and spatial resolution,
we can begin to anticipate rather than simply react
to forced displacement crises. The humanitarian
community must now translate these technical
capabilities into operational systems that can

save lives, reduce suffering, and support more
dignified responses to displacement in an era of
climate change.
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