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Executive Summary

We live in a world confronted with the impacts of
interacting climate change and forced displacement
crises. Millions of people are being forced to flee
because of conflicts, violence, and persecution, and
many of them have simultaneously been impacted
by slow-onset or sudden-onset weather events,
exacerbated by climate change. Given the likely
scenario of an average global increase in temperature
of more than 2°C compared to pre-industrial
temperatures by the end of the century, the potential
impact on livelihoods will be significant and likely

to result in greater numbers of people being forced
to flee. Estimates ranging between 200 million to 1
billion people are regularly cited in the media and
academic literature.” However, empirical evidence
for such severe scenarios remains sparse. Instead,

-

climate-migrants-might-reach-one-billion-by-2050/

as climate change incrementally progresses, the
evidence points towards more nuanced changes in
human mobility patterns.?

The potential impact of climate change on forced
displacement occurs through both rapid and slow-
onset events, each operating in distinct ways.

While rapid-onset disasters like storms and floods
typically generate immediate and often temporary
displacement, slow-onset changes such as rising
temperatures, drought, desertification, and sea-level
rise have the potential to create more systematic and
long-term displacement patterns, depending on the
context in which they occur. These gradual climate
shifts can contribute to economic instability, food
insecurity, competition for resources, and political
instability over extended periods, with the impact felt

“Climate Migrants Might Reach One Billion by 2050,” Inter Press Service, August 21, 2017, https://www.ipsnews.net/2017/08/

2 See, S, Opdyke, A., & Banki, S. (2025). A review of the climate change-disaster-conflict nexus and humanitarian framing of
complex displacement contexts. Climate and Development, 1-14. doi:https://doi.org/10.1080/17565529.2025.2514027

Figure 1: Map of project region
embedded in map of Africa.
The countries outlined in black
are included.
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most by already vulnerable populations. However,
those engaging in climate-related mobility due to
slow-onset climate events remain largely overlooked
in statistical analyses, as clearly establishing a link
between climate change and displacement remains
very challenging.

To shed more light on the climate-displacement
nexus, UNHCR developed a machine learning (ML)
model to anticipate and prepare for slow-onset
climate-induced displacement across East, Central,
and West Africa.® The climate crisis is particularly
acute in these regions, where many states lack the
necessary resources for adaptation. The model uses
individual data on refugees and asylum-seekers
registered by UNHCR after crossing a national
border as the main dependent variable for analysis
and modelling. The target variable being predicted
in this work is therefore cross-border displacement.
While internally displaced people (IDPs) generally
outnumber those displaced across an international
border,* internal displacement data was not available
at the temporal and geo-spatial granularity sought
after for this project and therefore were not included.
As the individuals in UNHCR’s registration database
are refugees and asylum-seekers, forcibly displaced
people in this report refers to those forcibly displaced
across an international border due to persecution,
conflict, violence, human rights violations and events
seriously disturbing the public order.®

The novelty of this project lies in the temporal

and geospatial precision of the data, from which
predictions of forced displacement are made.
Temporally, the project focuses on monthly time
intervals. The geospatial focus of the analysis are
0.5° grid cells, which are approximately 55 km?2.6 This
geospatial precision is more granular than national
and even subnational analyses and predictions that
are typically made regarding forced displacement.
Additionally, feature variables used for predicting the
cross-border forced displacement such as climate,
food security, socio-demographic, and conflict are
aggregated to the 0.1° grid cell unit, approximately 11
km?2, which allows for even more granular analysis.

In this project, the predictions are generated by an Al
model that combines tree-based models and different
types of neural network architectures to handle

the spatial dependencies and temporal dynamics
inherent in displacement events to predict forced
displacement outflows for each 0.5° grid cell. The Al
model enables monthly displacement predictions up
to six months ahead across three magnitude levels:
small-scale movements (0-10 people), medium-

scale events (11-500 people), and large-scale crises
(>500 people).

Overall, the predictive accuracy is reasonably high,
decreasing slightly with longer forecast horizons. On
the test dataset, the accuracy of the predictions is
around 99 per cent and 85 per cent for small-scale
and medium-scale displacement, respectively, while
the Al model manages to correctly predict more than

w

The 25 countries of focus include: Angola, Benin, Burkina Faso, Burundi, Cameroon, Central African Republic, Chad, Cote
d’lvoire, Democratic Republic of the Congo, Eritrea, Ethiopia, Ghana, Kenya, Mali, Mauritania, Niger, Nigeria, Rwanda,
Senegal, Somalia, South Sudan, Sudan, Togo, Uganda, and United Republic of Tanzania. Certain countries in this region are
left out due to a lack of displacement data, these include Equatorial Guinea, Gabon, The Gambia, Guinea, Guinea-Bissau,
Liberia, Republic of the Congo, and Sierra Leone. The small island countries of Cabo Verde, Comoros, Sdo Tomé and
Principe and Seychelles are also not included due to their small size.

Based on conflict-induced IDP data from the Internal Displacement Monitoring Centre (IDMC), 89.1 million people were
internally displaced within the 25 countries that this project focuses on between 2009 and 2024. Over this same period,
there were 10.4 million individuals registered in UNHCR PRIMES for these countries.

It is noteworthy that in 2020 UNHCR developed a document containing legal considerations concerning the applicability
of international and regional refugee and human rights law to claims for international protection when cross-border
displacement occurs in the context of the adverse effects of climate change and disasters. The document clarifies that
“the assessment of claims for international protection made in the context of the adverse effects of climate change and
disasters should not focus narrowly on the climate change event or disaster as solely or primarily natural hazards. Such a
narrow focus might fail to recognize the social and political characteristics of the effects of climate change or the impacts
of disasters or their interaction with other drivers of displacement. More broadly, climate change and disasters may have
significant adverse effects on State and societal structures and individual well-being and the enjoyment of human right.”
(https://www.refworld.org/policy/legalguidance/unhcr/2020/en/123356)

There are 6,225 grid cells within the project region of interest.


https://www.refworld.org/policy/legalguidance/unhcr/2020/en/123356

53 per cent of large-scale displacement events up to
six months in advance. However, large-scale crises
remain more difficult to predict, and the Al model
tends to generate more false negatives for large-scale
events than false positives, reflecting a tendency to
underpredict these events.

These results highlight the potential of this approach
to provide relatively reliable forecasts of forced
displacement up to six months beyond the timeframe
of the source dataset. By providing spatially and
temporally granular predictions, the framework offers
humanitarian organizations a tool to strengthen

early warning systems and support anticipatory
action. Ultimately, these predictions can enhance
preparedness and resilience in regions that are most
vulnerable to the risks of climate change and forced
displacement.

This report consists of four chapters. Chapter 1
discusses the theoretical linkages between climate
change, migration, and forced displacement, and
the findings of previous research investigating
these linkages. Chapter 2 offers an analysis of the
climate conditions within the region this project is
focused on, as well as historical forced displacement
trends. Chapter 3 details the modelling approaches
used for the intermediate models used to grid

the displacement data and predict the population
and food security within the grid cells at monthly
intervals. The chapter also describes the Al model
for predicting forced displacement outflows from
the grid cells in the future. Chapter 4 sets out how
this research can be applied in practice, explaining
how this project and the findings generated from

it can be used by UNHCR and other humanitarian
and development organizations for better targeting
investments in resilience and preparedness.



Key terms

Anthropogenic climate change — Climate change
driven primarily by human activities such as
greenhouse gas emissions and industrial processes.”

Artificial Intelligence (Al) — A branch of computer
science using hardware, algorithms, and data to
create “intelligence” to do things like make decisions,
discover patterns, and perform some sort of action.®

Climate change — A change in the state of the climate
that can be identified (such as by using statistical tests)
by changes in the mean and/or the variability of its
properties and that persists for an extended period,
typically decades or longer. Climate change may be
due to natural internal processes or external forces
such as modulations of the solar cycles, volcanic
eruptions and persistent anthropogenic changes in the
composition of the atmosphere or land use.®

Climate-related mobility — Human movement
(voluntary or forced) influenced partly or entirely by
climate or environmental change.™

Deep learning — A subset of machine learning
using multilayer neural networks capable of learning
complex, hierarchical representations.

N

Disaster displacement — Refers to situations where
people are forced or obliged to leave their homes or
places of habitual residence as a result of a disaster
or in order to avoid the impact of an immediate and
foreseeable natural hazard.™

Displacement — The movement of persons who have
been forced or obliged to flee or to leave their homes or
places of habitual residence (whether within their own
country or across an international border), in particular
as a result of or in order to avoid the effects of armed
conflict, situations of generalized violence, violations of
human rights or natural or human-made disasters.™

Ecosystem services — The benefits people obtain from
ecosystems, such as fertile land and precipitation.*

Ensemble model — A machine learning approach
that combines multiple models to improve predictive
accuracy and robustness.”™

Forced displacement — The involuntary movement
of people from their homes due to persecution,
conflict, generalized violence, human rights
violations or the adverse effects of climate change,
environmental degradation, or disasters.'®
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unhcr.org/glossary

14 United Nations (UN). (n.d.). System of Environmental-Economic Accounting. Retrieved from https://seea.un.org/
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15 Brown, D. W. (2023). A Unified Theory of Diversity in Ensemble Learning. Journal of Machine Learning Research 24, 1-49.

16 United Nations High Commissioner for Refugees (UNHCR). (n.d.). Master Glossary of Terms. Retrieved from https://www.

unhcr.org/glossary



https://unfccc.int/sites/default/files/resource/WIM_ExCom_human-mobility_TFD_2024.pdf
https://unfccc.int/sites/default/files/resource/WIM_ExCom_human-mobility_TFD_2024.pdf
https://circls.org/educatorcircls/ai-glossary
https://unfccc.int/sites/default/files/resource/WIM_ExCom_human-mobility_TFD_2024.pdf
https://unfccc.int/sites/default/files/resource/WIM_ExCom_human-mobility_TFD_2024.pdf
https://www.carnegiecouncil.org/explore-engage/key-terms/climate-mobility?utm_source=chatgpt.com
https://www.carnegiecouncil.org/explore-engage/key-terms/climate-mobility?utm_source=chatgpt.com
https://circls.org/educatorcircls/ai-glossary
https://www.unhcr.org/glossary
https://www.unhcr.org/glossary
https://seea.un.org/ecosystem-accounting
https://seea.un.org/ecosystem-accounting
https://www.unhcr.org/glossary
https://www.unhcr.org/glossary

Grain formation — The phase in crop development
during which grains (such as wheat or rice kernels)
develop and fill, determining yield.

Hydroclimatic whiplash — Rapid shifts between
extreme dry and extreme wet conditions within a
short timeframe.”

Integrated Food Security Phase Classification (IPC)
— A global, evidence-based system that categorizes
the severity of food insecurity into standardized
phases to guide humanitarian action.™

Internally displaced people — A person who has
been forced or obliged to flee from their home or place
of habitual residence, in particular as a result of or in
order to avoid the effects of armed conflicts, situations
of generalized violence, violations of human rights or
natural or human-made disasters, and who has not
crossed an internationally recognized State border."

Liptako-Gourma — Area along the borders between
the countries Burkina Faso, Mali, and Niger.

Neural network model — A computational model
composed of interconnected layers of nodes
(“neurons”) that learn patterns from data.?°

Phenological analysis — The study and
interpretation of the timing of recurring biological
events (such as flowering, leaf-out, or migration) and
how they are influenced by environmental conditions,
especially climate.?!

Population Registration and Identity Management
Eco-System (PRIMES) — UNHCR’s registration of
refugees and asylum-seekers.??

Rapid (sudden)-onset climate events — Short-
timescale hazard events such as floods, storms,
or heatwaves that occur abruptly and cause
immediate impacts.®

Slow-onset climate events — Gradual environmental
changes like sea-level rise, desertification, or
increasing drought that unfold over long periods.?

Transhumance corridors (routes) — Seasonal
migration pathways used by pastoralists to move
livestock between grazing areas and water sources.?®

Tree-based model — A machine learning method that
makes predictions by recursively splitting data into
decision “branches” using features.?¢
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CHAPTER 1.

The Big Picture

11 Overview of climate trends in Africa

Africa has experienced some of the most pronounced temperatures keep increasing, there will be a
warming trends globally, with temperatures profound redistribution of ecosystem services across
increasing at approximately 1.5 times the global the world. These changes in ecosystem services
rate.?’” Current climate models show that as global hold potential disadvantages, and in some cases

—

27 He, C, Zhu, Y., Guo, Y., Bachwenkizi, J., Chen, R, Kan, H., & Fawzi, W. W. (2025). Escalated heatwave mortality risk in sub-
Saharan Africa under recent warming trend. Science Advances, 11(48).



advantages, for local populations depending on the
many, often non-linear, relationships between climatic
variables and other factors, particularly factors in the
primary sector such as agriculture and fishing. For
example, per-hectare yields for most grains follow an
inverted U-shaped relationship with climate variables
such as temperature and precipitation. A similar
relationship exists between temperature and dairy
production, with productivity starting to decrease
once temperatures pass an optimal threshold. Rising
sea temperatures also impact the movements of
migratory fish, which, for many coastal populations,
are both an essential staple food and a primary
source of income. Whilst some regions may benefit
from increasing temperatures and precipitation,
most regions will experience a considerable decline
in agricultural and fishery productivity as the local
ecosystem services decline.

The impact of climate change on human mobility is
complex, but it manifests itself mainly through two
broad channels: an increase in the frequency and
intensity of sudden-onset events, like storms, floods,
and wildfires, and a higher risk for slow-onset events,
like droughts, changes in precipitation patterns, loss
of ecosystems, and salinisation of coastal areas due
to rising sea levels. Both types of events can lead to

BOX 1: What are slow-onset climate events?

changes in human mobility by aggravating multiple
causes of forced displacement both within and across
borders, especially where the ability to adapt is low
and vulnerability is high.

Natural hazards from rapid-onset climate events
usually lead to a displacement of short duration

and limited geographic scope, but more intense

and frequent natural hazard events can deplete a
household’s capital assets over time, reducing its
general resilience and adaptability to more gradual
environmental changes. At the same time, slow-
onset events may lead to ecosystem degradation,
particularly impacting households that depend on
rain-fed agriculture. Technology solutions can replace
many deteriorating ecosystem services (e.g., flood
protection, irrigation systems, crop rotation systems,
drought-resistant varieties, storm shelters, and
others), though often at considerable financial costs.
Consequently, given the considerable resources
needed to implement these solutions, poor and
marginalized population segments will experience a
loss of livelihood and quickly reach their coping limits
in the face of deteriorating ecosystems. As discussed
in the following sections, the loss of livelihoods due to
slow-onset climate change events is a potential factor
contributing to mobility and forced displacement.

What are slow-onset climate events? Unlike sudden onset disasters (floods, storms, landslides, wildfires),
that generally lead to sudden and usually short-term displacement within a limited geographic area, slow-
onset events develop gradually over months, years, or decades. Examples include:

- Rising average temperatures

« Changing precipitation patterns

- Increases in the occurrences of drought and desertification

- Land and forest degradation
. Sea level rise and coastal erosion

- Glacial retreat

These gradual changes often have little noticeable impact until they cross critical thresholds, at which
point entire areas can become uninhabitable or livelihoods can be impacted. Unlike sudden-onset events
that immediately force people from their homes, slow-onset events progress at a speed that can allow
households to adapt to changing circumstances. Adaptation can happen in situ, however when climate
conditions pass a certain threshold, migration may be the only solution.



1.2 When people are forced to move

Cross-border forced displacement in Africa stems
from multiple interconnected causes. While conflict
and violence generally remain the primary drivers,
they may be exacerbated by slow-onset climate
events, which increasingly act as multipliers that
intensify existing vulnerabilities and contribute to
events that trigger displacement.

The primary drivers of forced displacement include:

» Conflict and violence: Armed conflicts,
including extremist insurgencies, inter-
communal violence, and civil wars, constitute
the largest displacement driver. The Lake
Chad Basin, the Sahel region, and Horn of
Africa have experienced particularly high
conflict-driven displacement.

« Political persecution and human rights
violations: Authoritarian governance, ethnic
discrimination, and targeted persecution force
populations to seek safety across borders.

Additional indirect causes of forced
displacement include:

» Economic collapse: Livelihood failure,
particularly in agricultural communities, leads
to further stressors when households exhaust
coping mechanisms.

» Resource competition: Disputes over land,
water, and grazing rights between different
user groups, particularly farmers and
pastoralists, trigger localized tensions.

Given these drivers of forced displacement,
slow-onset climate events do not typically cause
displacement in isolation. Instead, they interact with
and intensify these existing drivers in multiple ways.?®
Communities can often adapt to slow-onset changes
through technical solutions such as planting drought
resistant crops, improved water management, or
adjusting the timing of planting and harvesting
cycles. But, when slow-onset climate change impacts

areas where people are already subject to high
level of poverty and underlying group tensions,
resource scarcity induced by changing precipitation
patterns and rising temperatures have a potential to
heighten tensions between groups that compete for
these resources. These developments can amplify
preexisting tensions that might otherwise remain
manageable.?® In the Liptako-Gourma region along
the borders of Mali, Burkina Faso and Niger, for
example, decreased rainfall and vegetation loss have
potentially been a factor in intensified farmer-herder
conflicts, contributing to some of the over 233,000
displaced persons who have fled their homes as
refugees between 2000 and 2025 (see box 2).

Figure 2 shows the theoretical linkage between
slow-onset climate events and conditions and human
mobility, which can materialize in several phases,
potentially leading to forced displacement:

- Immediate impacts: Extreme heat and
significant changes in precipitation patterns
directly threaten agricultural yields and livestock
survival. When crops fail repeatedly or pastures
become unusable, households lose their
primary source of income and may become
food insecure. Rural families, who depend
entirely on rain-fed agriculture or vegetation
and dependable water for their livestock, find
themselves with diminishing options as each
failed season depletes their resources further.

» Cascading effects: Temperature increases,
prolonged drought, or heavily concentrated
rainfall may force people to change their
behaviour. As water sources dry up, herders
must travel further distances to find water
and pasture for their animals. Meanwhile,
traditional coping mechanisms that once helped
communities weather difficult periods, such as
selling livestock assets or relying on extended
family support, become exhausted when entire

28 See, Opdyke, and Banki, “A Review of the Climate Change-Disaster-Conflict Nexus and Humanitarian Framing of Complex

Displacement Contexts.”

29 Intergovernmental Panel on Climate Change (IPCC). (2022). Climate Change 2022: Impacts, Adaptation and Vulnerabilities.

Intergovernmental Panel on Climate Change.
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Figure 2: Connection of slow-onset climate change events with primary migration
displacement drivers.

regions face the same pressures simultaneously.
Those that can may send some members

of the family to urban centres to find other
forms of work.

Tipping points: Herders who engage in
extended movements, taking their livestock
outside their traditional territories, possibly and
into more agricultural areas, increase the risk
of conflict with farming communities. If these
conflicts occur along group or ethnic lines,
where tensions and prejudices pre-existed,
they may boil over into violence. These risks
radicalizing people further and creating cycles
of violence and reciprocal violence. Meanwhile,
mass movements of people from rural to urban

areas may strain limited resources in cities.
Combined with limited food supplies because of
decreased productivity in agricultural areas, this
risks creating grievances among people against
others and pubilic institutions, and escalating
violence, both in rural and urban settings,
possibly forcing people to become displaced.
Climate change may also create challenges to
durable solutions and increase the vulnerability
of already displaced communities, leading to
further onwards movements and protracted
displacement situations.3°

30 United Nations High Commissioner for Refugees (UNHCR). (2025). No Escape II: The Way Forward. Bringing climate

solutions to the frontlines of conflict and displacement. United Nations High Commissioner for Refugees.
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BOX 2: Liptako-Gourma: Climate stress and rising tensions

As in much of Africa, temperatures in the Sahel, which lies south of the arid Sahara Desert, are climbing
faster than the global average. Additionally, the region is experiencing increasingly erratic rainfall patterns.
While overall precipitation across the Sahel may be increasing due to climate change,®' it is now often

in the form of sudden, heavy rainfalls that causes soil erosion rather than replenishing groundwater.
Precipitation of this kind delays and disrupts traditional planting cycles instead of nurturing vegetation.
Additionally, localized land degradation occurs in heavily used areas, particularly around water points and
along constrained transhumance corridors. These traditional transhumance routes that long sustained
pastoral communities are becoming unviable as water points dry up and pastures degrade.

The Sahel region has also experienced heightened levels of conflict in recent years. One area within the
Sahel of particular concern is the Liptako-Gourma region, which is the border area of Mali, Niger, and
Burkina Faso. UNHCR registered over 233,000 refugees and asylum-seekers from the Liptako-Gourma
region between 2000 and 2025.32

As traditional grazing areas deteriorated, many pastoralists have been forced to move their herds to new
grazing areas, bringing them into direct conflict with farming communities. At the same time, amid a reality
of a lack of formalized land registration and land titles®3, farmers have taken over grazing areas in response
to soil depletion and the demand for land amid rapid population growth. These factors have all contributed
to disrupting traditional resource-sharing arrangements. As a result, some farmers saw herders as a
nuisance or even a threat. Meanwhile, many pastoralists saw the farms as encroaching on their traditional
land. These overlapping claims have created flashpoints for violence in the Liptako-Gourma region.

Resource competition alone, however, does not explain the scale of violence that has been observed over
recent years. Many of these conflicts take an ethnic dimension, particularly between Fulani pastoralist
communities and farming groups like the Dogon and Bambara in Mali. In recent years, many Fulani
pastoralists have felt marginalized and accused of supporting criminal activities, further inflaming tensions.3*
Armed groups, made up, at least partially, of disgruntled Fulani youths, have engaged in activities targeting
both farmers and other pastoral communities. ACLED reports 16,000 conflict events in the Liptako-Gourma
region from 2000 to 2024, with 900 conflict events featuring people of Fulani ethnicity, either as civilians
under attack or as ethnic militias.

The bar plot in Figure 3 shows the annual cross-border displacement from the Liptako-Gourma region.
The grey bars show almost no displacement up to 2012, and then a sudden rise in displacement to over
37,000 people, corresponding with the outbreak of the civil war in Mali in 2012. The level of cross-border
displacement decreased after 2012, but has steadily been rising in the years since, reaching its highest
levels in 2024 with over 44,000 refugees from the region, most of them coming from Burkina Faso. The
number of conflict fatalities and high temperature days over the previous 12 months, shown in the blue and
red lines respectively have also trended upward over time. Between 2000 and 2011 there were a total of
117 conflict fatalities, climbing to almost 5,000 in 2020 and peaking at over 8,800 in 2023. The average
number of high temperature days over the previous 12 months for all grid cells in the year 2000 was just
under 7, but this figure rose to an average of 14.2 high temperature days in 2012 and 42.1in 2024.

United Nations High Commissioner for Refugees (UNHCR) and Potsdam Institute for Climate Impact Research (PIK). (2021).
Climate Risk Profile: Sahel. https://www.unhcr.org/61a49df44.pdf

Through September 2025.

Due to the lack of land registration/land titles/tenure, farmers are not willing to invest in infrastructure or expanding their
land parcels to make them more efficient. Consequently, small plots of land are over exploited, and the combined effect of
population growth and climate change makes the competition over the shrinking available arable land areas even fiercer.

Modibo Ghaly Cissé, “Understanding Fulani Perspectives on the Sahel Crisis,” Africa Center for Strategic Studies, April 22,
2020, https://africacenter.org/spotlight/understanding-fulani-perspectives-sahel-crisis/
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Figure 3: Number of yearly high temperature days (green), number of conflict fatalities (red),

and displacement counts (blue) for the Liptako-Gourma region from 2000 to 2024.
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CHAPTER 2:
Slow Changes,
Big Impacts

21 Rising temperatures

Temperature data across our study region reveal a averaging 0.03°C per year from 2000 to 2024,
general warming pattern over the past two decades. which translates to approximately 0.3°C per decade
Analysis of temperature data3® reveals a linear trend of warming. This is higher than the global average

35 Temperature data from the Climate Hazards Center InfraRed Temperature with Stations (CHIRTS).

14



Temperature Anomaly (°C)

East Africa
%]
2
0 MV l U T i 1 1 ' Y I
-1
Central Africa
3
2
1 M
o Y M/
7 L/ | I Tl 1 1
-1
West Africa
3
2
1
0 ! L") I T L
-1
2000 2005 2010 2015 2020 2025
Figure 4: Average monthly temperature anomalies over East, Central, and West Africa regions over
baseline — average monthly temperature between 1980 and 1990.
rate of warming, which has been 0.15 to 0.2°C per with seasonal variations. Figure 4 plots the monthly
decade since 1975.2¢ The increase in temperature is average temperature against the baseline temperature
not uniform across the region, though. Some areas from the years 1980 — 1990 for the same location
experienced significantly higher temperature increases and month, for countries in East®, Central®®, and
than others depending on the geographic location and West®® Africa. In East Africa, the average difference in
—
36 NASA. World of Change: Global Temperatures. Retrieved from https://science.nasa.gov/earth/earth-observatory/world-of-

37

38

39

change/global-temperatures/

Countries classified as East African include Burundi, Ethiopia, Eritrea, Kenya, Rwanda, Somalia, Sudan, South Sudan, United
Republic of Tanzania, and Uganda.

Countries classified as Central African include Chad, Central African Republic, Cameroon, Democratic Republic of the
Congo, and Angola.

Countries classified as West African include Benin, Burkina Faso, Céte d’lvoire, Ghana, Mali, Mauritania, Niger, Nigeria,
Senegal, and Togo.
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Figure 5: 3-year averages of the yearly number of high temperature days in study region —
comparison of the period of 2000 to 2002 (left) and the period of 2022 to 2024 (right).

temperature from the baseline among all months in

the years 2000-2004 was +0.47°C and by 2020-2024,
this rose to +0.88°C. These figures were +0.24°C and
+1.00°C in Central Africa, and +0.33°C and +0.96°C

in West Africa, respectively, for the same years. The
three regions therefore all experienced an average rise
in monthly temperature from the baseline averages
when comparing earlier and later periods of the project
timeline, with the largest increase in Central African
countries.

In addition to generally rising temperature trends,

the frequency of extreme heat events has increased
dramatically across the region over the past two
decades. Figure 5 shows the average number of
high temperature days,*° for each 0.1° grid cell for the
years 2000-2002 (left) and 2022-2024 (right). As high
temperature days are above the 99th percentile for a
given location, stable conditions would yield 3-4 high
temperature days annually. In the years 2000-2002,
the annual average number of high temperature days
was 8.47, during the 2022-2024 period, this had
jumped to 30.63 days.

Between 2000 and 2002, 48.6 per cent of grid cells
saw 1-10 annual high temperature on average, 40.3
per cent experienced 11-25 annual high temperature
days, and 10.9 per cent experienced 0 annual high
temperature days. The number of grid cells with

26 or more high temperature days on average was
negligible. Between 2022 and 2024, 51.0 per cent of
grid cells saw 26-50 annual high temperature days
and 12.3 per cent saw more than 50 annual high
temperature days on average. The percentage of grid
cells experiencing O high temperature days was 1.5 per
cent. The maps and underlying statistics demonstrate
that in recent years, large swaths of the continent
have experienced 26 or more high temperature

days annually. Some regions, particularly the highly
populated areas of coastal West Africa and around
Lake Victoria in Uganda and the United Republic of
Tanzania,, have endured more than 50 such days.

Periods of anomalously high temperatures risk
coinciding with critical agricultural periods, such
as the beginning of the growing season when
crops need stable conditions to grow,* and when
pastoralists traditionally move their herds to
established grazing areas. Extreme heat during
these sensitive periods can damage vegetation

40 High temperature day defined as a day with temperature high above the 99" percentile of high temperature among all days

from 1950-1980 for a given location.

41 Shukla, Shraddhanand, Gregory Husak, William Turner, Frank Davenport, Chris Funk, Laura Harrison, et al. (2021). “A Slow
Rainy Season Onset Is a Reliable Harbinger of Drought in Most Food Insecure Regions in Sub-Saharan Africa.” PLoS ONE
16, no. 1: e0242883. https://doi.org/101371/journal.pone.0242883
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Figure 6: Estimated number of people living in area with 40 or more high temperature days per year.

and decrease water supplies through increased
evaporation. These conditions can therefore disrupt
agricultural and pastoral calendars that communities
rely upon, adding additional stress on communities,
especially those with fewer resources.

As discussed above, rising temperatures can

strain agricultural systems by impacting crop and
vegetation yields, lowering the supply of available
food and water supplies. Such vulnerabilities are of
particular concern in Sub-Saharan Africa, which has
the fastest population growth rate in the world. So,
the strained supply of vegetation and water is met
with increased demand due to a rapidly growing
population. According to the population data,*? the
estimated population of the region of focus was
approximately 520 million in 2000. In 2024, the
estimated population was around 1 billion, an almost
doubling of the population in less than 25 years.
The rising temperatures and increased population

mean that many more people are being exposed to
temperatures that would be considered anomalous
on a frequent basis. Figure 6 shows the estimated
number of people experiencing 40 or more high
temperature days in each year. In a normal situation,
an area would only experience 1 per cent of days
being high temperature (3 — 4 days a year). So, 40
high temperature days represents a huge deviation
from this norm.

The number of people experiencing 40 or more high
temperature days in 2000 remained relatively low
until 2015, but exploded since 2023, reaching almost
600 million in 2024.

Although long-term predictions are beyond the scope
of this project, temperature and population trends in
the region clearly indicate an upward trajectory in the
coming years. Figure 7 illustrates the potential impact
of these trends on the number of people exposed

42 LandScan data of modelled annual population at 1 km resolution from 2000 — 2024.
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Figure 7: High temperature days (coloured) and population size (bubble size) by grid cell in 2010 (left) and
expected figures in 2040 (right).

to high temperature days per 0.5° grid cell in 2040,
assuming a linear continuation of the trends observed
between 2000 and 2025. The bubble sizes in Figure
7 represent the population of each 0.5° grid cell in
2010 (left) and the projected population in 2040
(right) based on simple linear trends. The colours of
the bubbles indicate the number of high temperature
days in the respective year. In 2010, the region of
interest had a population of 680 million people, of
which approximately 122 million were exposed to 40
or more high temperature days. Our simple linear
extrapolation suggests that the region’s population
will reach around 1.5 billion by 204042, Based on

our analysis, 887 million of this total population

are expected to be exposed to 40 or more high
temperature days in that year.

A significant number of the grid cells are expected

to experience 60 and more high temperature days

in 2040, particularly in the regions of coastal West
Africa, South Sudan, northern Somalia, and the Lake
Victoria. According to UN population estimates,
countries in Sub-Saharan Africa are projected to
increase in population by 79 per cent by the mid-
2050s, reaching 2.2 billion. Three countries within the
focus of this project, Angola, the Democratic Republic
of the Congo, and Niger, are likely to double in size

between 2024 and 2054.# This population growth
is evident in Figure 7, where many of the bubbles

in 2040 are larger than their 2010 counterparts,
especially in urban and para-urban areas. It should
be noted that the 2040 map appears to have more
empty grids, indicating a population below zero. This
is a result of negative population trends in these

grid cells, which are interpreted in our simple model.
However, as climate and population predictions are
beyond the scope of this project, these figures should
be understood as rough estimates of the converging
trends of rising temperatures and populations rather
than precise projections.

As discussed in Chapter 3, the rising temperatures
and populations along with a myriad of other triggers
will potentially contribute to forced displacement,
especially from unstable areas experiencing conflict.
The movements of large number of people will put
further strain on the areas that they settle, such as
urban areas and refugee camps, which may already
be experiencing environmental and population
stress. This additional pressure on resources

and infrastructure in these receiving areas could
exacerbate existing challenges and potentially lead to
new conflicts or humanitarian crises.

43 This closely match the UN Population Division medium variant prediction for the same countries of 1.48 billion in 2040

(retrieved from: https://population.un.org/wpp/)

44 United Nations. “Population.” United Nations — Global Issues. https://www.un.org/en/global-issues/population
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2.2 Unpredictable precipitation

In the 1980s, parts of Africa, particularly the Sahel and
Ethiopia, experienced some of the most devastating
droughts of the 20" century. Since then, there has
been a recovery in seasonal rainfall amounts. But the
recovery in rainfall quantity masks important changes
in disruptions to the timing, intensity, and geographic
distribution of the precipitation that many livelihoods
depend upon. Three notable characteristics relating
to precipitation in the region since 2000 have been
increasing drought levels, especially in certain

areas, increased levels of very high precipitation,
periodically creating flood conditions, and shifts in the
seasonal timing of vegetation peaks, which pose a
challenge to farmers and pastoralists.

Increasing drought

Although drought conditions have improved since
the mid-1980s, they have increased overall since the
early-2000s. Examining accumulated drought, which
measures the sum of inverted drought index*® over
the previous 72 months (6 years), Figure 8 shows the
average accumulated drought in each grid cell in the

periods 2000-2006 (left) and 2018-2024 (middle),

as well as the change in drought levels between the
2018-2024 average and the 2000-2006 average
(right). The average accumulated drought among

all grid cells in the period 2000-2006 was 22.81, as
compared to 4915 in 2018-2024, representing a more
than doubling of average drought levels between the
two periods.

Some notable sub-regions that have seen an increase
in average drought levels are the Liptako-Gourma
region, which experienced an average increase of
24.0; central Nigeria, which experienced an average
increase of 35.4; northeast South Sudan with an
increase of 52.5, and Somalia with an increase of
76.9 average accumulated drought levels between
the period 2000-2006 and 2018-2024. As discussed
later in the chapter, these are also areas that have
experienced high levels of forced displacement
since 2000. Extended periods of drought risk
causing desertification, which is a permanent
transition towards desert conditions. The process of
desertification affect about 46 per cent of Africa and
approximately 500 million people.*®

45 Drought levels measured through the Standardized Precipitation Evapotranspiration Index (SPEI). Higher drought levels
have a more negative SPEI, so we invert SPEI values for our analysis.

46 Reich, P, Numbem, S. T., Almaraz, R., & Eswaran, H. (2001). Land resource stresses and desertification in Africa. In E.
Bridges, Responses to Land Degradation. Boca Raton: CRC Press.
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Figure 8: Accumulated number of drought months over the periods of 2000 to 2006 (left) and 2018 to 2024 (middle)
as well as comparison between both periods (right). Drought months are defined as those with an SPEI of -1 or less.



Figure 9: Average number of heavy precipitation days during peak precipitation month in the years 2000-2002
and 2022-2024.

Communities in these persistently arid regions are
confronted with a new reality: drought conditions

are no longer temporary events requiring short-term
coping strategies and have become semi-permanent
environmental conditions requiring either a complete
shift in livelihoods or permanent migration. Traditional
resilience mechanisms including livestock sales,
kinship support networks, and inter-annual resource
buffering become ineffective in the absence of
recovery periods.

Concentrated precipitation

As the region has experienced increasing levels of
drought, many areas also receive annual precipitation
matching or exceeding historical averages, but this
rainfall is concentrated in high-intensity events.
Precipitation that previously occurred steadily, over
multiple days, allowing for soil infiltration and aquifer
recharge, now occurs as intense storms delivering
the equivalent of previous total monthly rainfall
within hours. Figure 9 documents this intensification,
showing the number of average heavy precipitation
days. in the high precipitation month between the
years 2000 and 2002 (left) and between the years
2022 and 2024 (right). Areas that experienced a
normal amount of heavy precipitation events in the
earlier period now face them much more frequently.

20

Some noticeable changes in the number of heavy
precipitation days during the high precipitation
months are Burkina Faso, which experienced an
average of 1.78 heavy precipitation days during the
period 2000-2002 and 2.34 days during the period
2022-2024; the area around Lake Chad, which
averaged 0.49 heavy precipitation days in the earlier
period and 1.76 in the later period; and southern
Somalia, which experienced 1.03 heavy precipitation
days in the earlier period and 1.29 in the later period.

The increase in concentrated rainfall disrupts
traditional agricultural practices that depend on
predictability. For agricultural systems, the intense,
heavy rainfall can lead to seeds being washed away
or damaged. Pastoral systems also face flooding
within pastures, followed by rapid desiccation.

As much of the region has experienced both
increased drought during certain times of the year
and extremely high precipitation during other times
of the year, these areas with alternating extremes
risk can experience “hydroclimatic whiplash,” a
phenomenon characterized by an extended dry
period that leads to soil hardening, followed by
intense precipitation events. When rain falls on
hardened soil, it tends to generate surface runoff



rather than infiltrating the ground, which can lead
to increased erosion, flash flooding, and reduced
groundwater recharge.?’

Changing vegetation

Despite conditions of increased drought and extreme
precipitation, much of the region has seen an
increase in average annual vegetation,*® in recent
years. Figure 10 shows the percentage change in
NDVI in the peak NDVI months for each 0.1° grid cell
in years 2018-2024 as compared to 2000-2006
average levels. Overall, the average NDVI in peak
NDVI months during the period 2018-2024 was 4.48
per cent higher than during the 2000-2006 period. In
the Liptako-Gourma region, which encompasses the
border area between Mali, Niger, and Burkina Faso,
NDVI in the 2018-2024 period was 17.42 per cent
higher than in the 2000-2006 period. In northeast
South Sudan, NDVI was 4.85 per cent higher in the
later period. Conversely, central Nigeria and southern

Somalia have experienced a decrease in average
NDVI between the two periods of 4.20 per cent and
2.54 per cent, respectively.

Although the region has experienced an increase

in NDVI in the peak NDVI months in recent years,
Figure 11’s phenological analysis reveals that peak
vegetation is now out of sync with traditional
agricultural and pastoral calendars in certain areas.
This increases the risk of agricultural and/or pastoral
activities being implemented at the wrong time. For
instance, if farmers plant a certain crop at the same
time each year, changing precipitation patterns may
mean that their crops will face too much or too little
precipitation at key stages in the development of
the vegetation process, damaging the crops and
lowering yields. Similarly, pastoralists may travel to
a certain area during a particular period, expecting
there to be vegetation and water for their livestock,
but upon arriving find that these vital resources

are insufficient, posing a risk to their animals, and
thereby, their livelihoods. While Figure 10 indicates
vegetation increases in the region, phenological
shifts documented in Figure 11 may reflect multiple

47 Swain, D. L., Prein, A. F,, Abatzoglou, J. T,, Albano, C. M., Brunner, M., Diffenbaugh, N. S,, . . . Touma, D. (2025). Hydroclimate
volatility on a warming Earth. Nat Rev Earth Environ, 6, 35-50. doi:https://doi.org/10.1038/s43017-024-00624-z

48 As measured by the Normalized Difference Vegetation Index (NDVI).
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Figure 10: Differences in average NDVI indices over the periods of 2018 to 2024 and of 2000 to 2006.
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Figure 11: Phenological shift - change in peak vegetation timing (2018-2024 vs 2000-2006).

factors beyond precipitation changes. Agricultural in vegetation cover aligning with cropping seasons
expansion, changing crop varieties, urbanization, and rather than natural rainfall patterns. Areas showing
shifts from pastoral to agricultural land use could all dramatic changes over time may indicate land use
alter peak vegetation timing. For instance, replacing conversion rather than, or in addition to, climate-
natural vegetation with crops would lead to peaks driven ecosystem changes.

BOX 3: Lake Chad: Conflict in a changing environment

The Lake Chad region, encompassing parts of Nigeria, Chad, Niger, and Cameroon, has become a hotspot
for violence and instability. The crisis in this area is driven by a combination of factors, including the rise of
extremist groups such as Boko Haram and the Islamic State West Africa Province (ISWAP), ethnic tensions,
poor resource management, and environmental changes.

The origins of Boko Haram can be traced back to the early 2000s when it emerged as an Islamist sect in
northeastern Nigeria. Boko Haram has drawn much of its membership from Kanuri fishermen and traders,
many of whom lost their traditional livelihoods as Lake Chad shrank due to climate change and water
mismanagement. Economic hardship and political marginalization made these communities particularly
vulnerable to Boko Haram’s recruitment efforts. The group exploited local grievances, promising financial
incentives and a sense of purpose to disillusioned youths. This is exemplified by 16 per cent of survey
respondents in northeast Nigeria reporting that they knew someone who joined Boko Haram because of
challenges relating to climate change.*®

In 2016, Boko Haram splintered following leadership disputes, leading to the emergence of the Islamic
State West Africa Province (ISWAP). While Boko Haram continued its brutal tactics, ISWAP sought to portray
itself as a more strategic and governance-oriented group. ISWAP initially gained support by presenting
itself as less indiscriminate in its violence. However, as both factions competed for control over resources,
recruitment, and territory, they began engaging in direct conflict. Clashes between Boko Haram and ISWAP
have further deepened the region’s insecurity.

49 United Nations Institute for Disarmament Research. (2024). Climate Change is Driving People into Armed Groups. United
Nations Institute for Disarmament Research.
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Figure 12: Number of conflict events (red), medium temperature (light blue), heavy precipitation (green)
and forced displacement counts (blue bar chart) for the lake Chad region from 2000 to 2024.

In Figure 12, the bar plot below shows the annual levels of cross-border displacement, while the levels of
conflict events, medium-term temperature and heavy precipitation days are depicted in the blue, red and
green lines respectively. The grey bars show that there was very little cross-border displacement prior to
2013, but this increased to over 200,000 people in 2014, coinciding with the expansion of Boko Haram.
Cross-border displacement has dropped since then but has risen slightly in recent years. Since 2000, the
levels of conflict events, medium-term temperature and heavy precipitation have all trended upward.

2.3 Interlinkages between

environmental stressors

The temperature and precipitation changes detailed
in the two previous sections affect populations
through various channels. Especially in regions where
livelihoods depend heavily on rain-fed agriculture, as
is the case in most of our study region, environmental
stressors can trigger sequential impacts that
subsequently contribute to displacement.

Most rural households in the region practice
smallholder farming and pastoralism. These systems
have historically adapted to variable conditions, but
the magnitude of current changes, as documented in
Chapters 2.1and 2.2, increasingly exceeds traditional
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coping capacities. Nearby urban populations depend
on rural production through market chains that
connect rural producers to urban consumers.

As explained above, rising temperatures and shifting
precipitation patterns affect agricultural output. Crop
yields decrease when temperatures exceed optimal
ranges for photosynthesis and grain formation.
Altered rainfall timing disrupts traditional planting
and harvesting cycles which normally follow the
rainy season. Particularly, in the early stages of the



planting season, high temperatures and the lack of
precipitation, or abnormally high precipitation, have a
lasting impact on the plants and later yields.

For pastoral systems, these changes are observed

in reduced pasture quality and changes in water
availability, as well as reduced dairy production.
Traditional routes taken by pastoralists become less
viable when the expected resources fail to materialize
consistently over time and in known locations.

Reduced agricultural productivity affects food security
in several ways. Rural households face direct shortfalls
in their consumption when yields decline. Market
systems experience disruptions as reduced volumes
lead to higher transaction costs per unit and increased
price volatility, making trade less predictable and
profitable. As a consequence, urban consumers face
reduced availability and higher prices for basic food
items. When production shortfalls occur across multiple
areas simultaneously, they can overwhelm traditional
support mechanisms such as family assistance and
local food sharing arrangements.

Sustained climate-induced stress can intensify
competition for resources between different
traditional user groups. Farmers and herders may find
themselves competing for the same land and water
resources as environmental conditions shift. Historical
resource-sharing arrangements come under pressure
when the availability of resources declines below
critical thresholds. In areas with weak governance

or pre-existing social divisions, such competition for
resources can lead to escalating tensions.

Therefore, climate risks and conflict dynamics
reinforce one another, with flooding, drought and
desertification contributing to competition over land
and water, exacerbating existing livelihood stresses,
and intensifying conflict over scarce resources. In
turn, insecurity and the presence of non-state armed
groups restrict safe access to farmlands, grazing
areas and markets, limiting households’ ability to
recover from climate shocks. In many conflict-affected
areas, people already displaced by violence are
repeatedly exposed to floods and heatwaves, further
undermining their resilience and complicating efforts
to support safe returns or local integration, often
leading to cross-border displacement.

2.4 Displacement trends across the region

This report uses forced displacement data from
UNHCR'’s Population Registration and Identity
Management Eco-System (PRIMES) database. PRIMES
records each individual who has been registered

as a refugee or an asylum-seeker by UNHCR after
crossing an international border. The report therefore
focuses on people displaced beyond their own
country. Data limitations curtail the opportunity to
include internally displaced people (IDPs), granular
data is rarely available for such populations and the
population estimates are often based on relatively
infrequent surveys which do not allow the production
of monthly figures at the sub-national geo-spatial
resolution required to place individuals into specific
grid cells by their place of origin.
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Displacement over time

Between January 2000 and September 2025, the
region saw a number of monthly peaks in forced
displacement levels corresponding to major events as
depicted in Figure 13.

The intensity of these surges has increased in more
recent years and the geographical distribution

of displacement has undergone a substantial
transformation between the earlier and later years

of the study period. Through 2010, cross-border
displacement was relatively low. There were only a
few outbreaks of conflict events including the crisis
in Darfur in 2003, the civil war in Somalia in 2009,
and the civil war in Cote d’lvoire in 2010, which
contributed to spikes in forced displacement. Notably,
this decade saw lasting peace resolutions to long-
running conflicts in Angola in 2002, where a civil war
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Figure 13: Total monthly cross-border displacement from East-, Central-, and West-African countries, January
2000 to September 2025. Figure 13 presents the stark reality of escalating cross-border forced displacement
across East, Central, and West Africa. The figure shows a rising trend in cross-border forced displacement with

many sudden surges, mainly triggered by the outbreak of conflict events.

was fought since 1975, and in Burundi in 2005, where
a civil war was fought since 1993. Additionally, the
Second Ivoirian Civil War, which broke out in late-
2010, was resolved by mid-2011. Since 2011, there has
been an escalation of conflicts across much of this
region, which have led to large-scale surges in cross-
border displacement. In addition to the continuation
of civil war in Somalia, civil wars broke out in Mali and
the Central African Republic in 2012, and southwest
Cameroon in 2016, all of which continue to the
present. Civil wars in Ethiopia (2020 — 2022) and
South Sudan (2014 — 2020) ended in peace deals,
but there is still a risk of conflict flaring up again in
these countries. Extremist groups such as Al Shabaab
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in Somalia, Jama’at Nasr al-Islam wal-Muslimin
(JNIM) in the Sahel, and Boko Haram and ISIS in

the Lake Chad area continue to exploit weak public
institutions and cause conflict in the region. Finally,
the outbreak of conflict in Sudan in 2023 and the
rising intensity of conflict in the Democratic Republic
of the Congo in 2025 have also led to significant
cross-border displacement.

Figure 14 shows the intensity of displacement from
grid cells between the earlier years of our analysis,
2000 to 2006, and the later years, 2018 to 2024.
There are small clusters of grid cells that experienced
higher displacement in the earlier period than the
later period; these include the Casamance area of
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Figure 14: Cumulative cross-border displacement at the 0.5-degree grid level for the periods 2000 to 2006 and
2018 to 2024 (log scale) by area of origin.

southern Senegal, southern Togo, and Angola. But

in general, the grid cells which have experienced
displacement are a darker colour in the 2018-2024
map, demonstrating higher levels of displacement

in the later period owing to the development of
conflicts detailed above. Interestingly, areas with high
displacement in the later period, such as Liptako-

Gourma, southwest Cameroon, Lake Chad, western
Central African Republic, eastern South Sudan,
Eritrea, and southern Somalia, all experienced some
displacement in the earlier period. This suggests high
levels of displacement often occur in areas where at
least some displacement had previously occurred.

2.5 Climate trends and displacement

In light of the changing climate conditions and the
increased incidence of forced displacement in
recent years, we examined the relationship between
these two trends. As discussed in Chapter 1, the
linkage between slow-onset climate change and
displacement is indirect and complex. As this project
focuses on a large geographical area, it would be
impossible to find a single statistic which measures
the uniform relationship between a climate variable
and displacement. For instance, rising temperatures
in one area might have no impact on livelihoods
and the risk of people becoming displaced, but

may have a significant impact in another areas.
Therefore, the following sections focus on the
localized relationship between temperature change
and displacement and drought and displacement.
We also observed increased seasonal variation in
displacement in recent years, which may indicate
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increased displacement due to climate conditions at
certain times of the year, such as displacement at the
end of the dry season due to diminishing crop stocks
resulting from poor yields during the growing season.
However, these trends require further analysis to
establish a more definitive relationship between
climate change and displacement patterns.

Displacement and temperature

There is some spatial correspondence between
temperature change and significant humanitarian
crises in some areas, though this relationship is

not universal. The circles in Figure 15 represent the
level of displacement from the grid cells that have
experienced any displacement outflows since 2000.
The colour scale shows the average 2020-2024
monthly temperatures change by grid cell against



Figure 15: Geographical distribution of temperature anomalies and displacement across the study region
— comparison of 2020-2024 average temperatures with baseline period (1980-1990) and cross-border
displacement between 2000 and 2024. Only grids with at least a population of 50 people are colored.

the average temperatures during the baseline period
of 1980-1990. The average monthly temperature
difference from the baseline for each grid cell in

the 2020-2024 period was +0.95°C. The border
between Sudan and South Sudan, which appears
prominently in the warmest zones of our temperature
mapping, with an average temperature difference

of +1.37°C, has been among the largest sources of
forced displacement in our study region, producing
2.5 million refugees since 2000. Some other areas
of notice in terms of temperature rise and forced
displacement are Eritrea, which has experienced

an average temperature difference of +1.04°C

and over 600,000 refugee outflows; and Central
African Republic, which has experienced an average
temperature difference of +1.13°C and almost 1 million
refugee outflows.

Interestingly, the Liptako-Gourma region, Lake
Chad and Darfur region in western Sudan have all
experienced significant displacement but did not
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experience particularly high temperatures during the
period of 2000 to 2024 as compared to the baseline.
The average monthly temperature differences in
these areas were +0.79°C, +0.44°C, and +0.51°C,
respectively. These areas, which have experienced
high levels of forced displacement, have therefore
seen temperatures that are higher than the baseline,
but less than the average temperature increase

for the whole project region. This finding suggests
that while temperature change may contribute to
displacement, other factors such as political instability,
conflict, and socio-economic conditions likely play

a more direct role in driving forced displacement in
these specific regions.

Displacement and drought

As mentioned in Chapter 2.2, the region of study has
experienced a general increase in drought conditions
since 2000. Figure 16 below shows the correlation



index of accumulated drought®® with logged monthly
displacement for each grid cell over the period
January 2000 to September 2025. Similar to Figure
15 above, the bubble size represents the total
displacement from each grid cell since 2000.

Overall, the average correlation between
accumulated drought and monthly logged
displacement among the grid cells that have
experienced some displacement is 0.12, indicating a
weak signal. But certain clusters of grid cells show a
high correlation between the drought measurements
and logged displacement. For instance, grid cells

in the Liptako-Gourma region have an average
correlation of 0.38 between accumulated drought and
monthly logged displacement. When weighting this
correlation average by total displacement from the
grid cells in Liptako-Gourma, the coefficient increases
to 0.44, demonstrating that grid cells with higher
displacement have generally experienced more
severe drought conditions. Similarly, in southwest
Cameroon, where a civil war has been ongoing

since 2016, the correlation between accumulated

drought and logged monthly displacement is 0.28.
When weighted by displacement, the coefficient rises
to 0.55. In the Lake Chad region, grid cells have a
correlation of 0.31 between accumulated drought and
logged displacement, and weighting by displacement
yields a coefficient of 0.68. These findings suggest
that while the overall correlation between drought
and displacement may be weak across the entire
study area, specific regions experiencing high levels
of displacement tend to show a stronger relationship
between drought severity and forced displacement.
It is important to note that some areas with high
displacement have a negative correlation between
drought and logged displacement. The most notable
example is western Sudan, where the Darfur region
has experienced waves of conflict, particularly during
the crisis in 2003-2004 and since the civil war broke
out in 2023. The blue grid cells in Darfur indicate a
negative correlation between drought and logged
displacement, with an average correlation of -0.11

in this area. This finding suggests that the relatively

50 Accumulated drought measures the sum of inversed drought index, SPEI, over the previous 72 months (6 years).
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Figure 16: Correlation coefficient of accumulated drought and logged monthly displacement by grid cell.



favorable climate conditions in Darfur may actually
be a source of conflict, as people compete over
fertile lands.®!

Seasonality

Figure 17 illustrates the average monthly
displacement from all grid cells, grouped into
5-year periods, showing the seasonal dynamics that
underlie cross-border displacement. Based on the
increased intensity of displacement events since
2010, it is unsurprising that the lines for the 5-year
periods 2000-2004 and 2005-2009 have lower
average monthly displacement than the lines for
the later periods. It is interesting that not only has
displacement increased in the recent periods, but
that the seasonal variation of displacement has also
increased. In the early periods, there was very little
difference in average displacement between peak
and low months. However, starting from the period
2010-2014, there have been large seasonal swings
in the average number of displaced persons. As
discussed above, most spikes in displacement are
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triggered by conflict events, which may be influenced
by seasonal factors. It is possible that these conflict
events are partially driven by increased competition
for resources due to the impacts of climate change,
which can be amplified at certain times of the year.
For instance, reduced crop yields resulting from

rising temperatures, drought conditions, and/or

erratic precipitation can lower food stocks and trigger
tensions or conflicts, particularly during the late

dry season when food scarcity is at its peak. Such
dynamics may increase the likelihood of displacement
during specific periods of the year, leading to
seasonally concentrated displacement patterns.
Further investigation into the growing seasonality of
displacement trends could provide greater insight into
the complex relationship between climate change and
forced displacement, making it an area that warrants
additional research.

Olsson, O., & Siba, E. (2013). Ethnic cleansing or resource struggle in Darfur? An empirical analysis. Journal of Development

Economics, 103, 299-312. doi:https://doi.org/10.1016/j.jdeveco.2013.02.004
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Figure 17: Seasonality patterns in mean displacement over five-year increments.
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CHAPTER 3:

Understanding
the patterns

This chapter presents the methodological framework
underpinning the CLIFDEW-GRID displacement
prediction model. Acknowledging the complex
relationship between climate change and forced
displacement, we have developed a systematic
approach to capture these interactions through
intermediate modelling steps. These steps involve
predicting specific feature variables that contribute
to estimating the risk of forced displacement from
individual grid cells. By breaking down the modelling
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process into smaller, interconnected components,
the CLIFDEW-GRID model aims to provide a more
nuanced understanding of the various factors that
influence displacement patterns in the context of a
changing climate.

Although previous sections focused on potential
interplay between climate change and displacement,
we avoid drawing direct causal links between climate
conditions and forced displacement. Instead, our
approach recognizes that slow-onset climate events



potentially contribute to displacement through
indirect pathways, interacting with social, economic,
and political factors. For instance, climate stress
affects agricultural yields and pastoral systems,
which impacts food security, which in turn increases
population vulnerability. This vulnerability, when
combined with pre-existing tensions along ethnic
lines or other grievances, can escalate into conflict
and ultimately forced displacement.

To model this indirect linkage, we require data to
serve as indicators at each stage. Climate data, such
as historical temperature, precipitation, drought,

and vegetation index measurements, are readily
accessible. These datasets provide essential
information on the changing environmental conditions
that may influence factors like resource availability
and agricultural productivity. In addition to climate
data, we utilize geo-coded point locations of conflict
events from the Armed Conflict Location & Event
Data Project (ACLED). This dataset offers valuable
insights into the spatial distribution and intensity of
conflicts, which can be a significant driver of forced
displacement. By combining climate and conflict
data, we can better understand the complex interplay
between environmental factors, resource scarcity,
and political instability, and how these elements

Population density model

Food security model

contribute to displacement risk. The integration of
these diverse datasets enables the CLIFDEW-GRID
model to capture the multi-faceted nature of the
climate-displacement relationship and provides more
accurate predictions of forced displacement patterns.

However, there were no readily useable data for
certain steps in our theoretical structure. Levels of
forced displacement from a specific location are
influenced by the population present in that location.
As historical population data are only available
annually, we developed a model to predict the
monthly population in each grid cell. As an indicator
of livelihoods, we chose food security as a key
variable. Although historical data on food security is
available through sources such as the Famine Early
Warning Systems Network (FEWS NET), these data
do not cover our entire region and do not extend far
enough back in time for the timeline on which we train
our models. To address this limitation, we developed
a model to predict the food security classification

for each location, starting from the initial point of our
model training. Finally, the raw cross-border refugee
data used for this project were not allocated to the
desired grid cells. Therefore, we developed a model
to assign the refugee observations to the appropriate
grid cells. By creating these intermediate models, we

Displacement gridding
model

monthly population
estimates

monthly food
security index

gridded
displacement data

Final model

Figure 18. Overview of intermediate models and how they feed into the final model.



were able to fill critical data gaps and ensure that the
CLIFDEW-GRID model has access to the necessary
inputs to accurately predict forced displacement
patterns in response to climate change and other
relevant factors. In summary, to capture these
complex pathways, we developed three intermediate
models that provide monthly inputs to our final
displacement prediction model:

« Population Density Model: This model
predicts the monthly population in each grid
cell, addressing the limitation of historical
population data being available only annually.
By estimating population at a higher temporal
resolution, we can better account for the
influence of population dynamics on forced
displacement levels.

» Food Security Model: To incorporate livelihoods
as a key factor in displacement risk, this model
predicts the food security classification for each
location. It extends the historical food security
data from sources like FEWS NET, enabling us
to cover our entire region of interest and the full
timeline required for training our displacement
prediction model.

- Displacement Gridding Model: As the raw
cross-border refugee data were not initially
allocated to the desired grid cells, this model
assigns refugee observations to the appropriate
grid cells. This intermediate model ensures that
the displacement data is spatially aligned with
the other input variables, facilitating the accurate
prediction of forced displacement patterns.
These intermediate models play a crucial role

3.1 Population model

Overview

Predicting forced displacement outflows from a
geographical area requires knowing the number of
people exposed to conditions that lead to forced
displacement. While modelled population estimates

53 See list of variables in annex/website
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in the CLIFDEW-GRID framework by filling

data gaps, increasing the temporal and spatial
resolution of key variables, and ensuring the
consistency and compatibility of the input data.

The population density, food security, and gridded
cross-border displacement variables produced
through the intermediate models, along with
additional variables measuring climate, geography,
demographics, wellbeing, governance, and conflict®®
are used as inputs to the model that predicts cross-
border displacement from the 0.5° grid cells. The
model generates predictions for 1, 3, and 6 months
into the future, providing valuable information for
early warning and preparedness efforts.

To address the challenge of covering such a wide
area with diverse dynamics, ranging from regions
experiencing minimal displacement to those facing
highly complex interactions between slow-onset
climate change, conflict, and economic shocks, we
employ an ensemble modeling approach. Using
granular 0.5° grid-level data allows the ensemble to
identify fine-scale dynamics that analysis with country-
level or regional data might overlook.

The ensemble incorporates several models,
including tree-based methods, which are able to
capture non-linear relationships and deep neural
networks, designed for complex spatiotemporal
dependencies. By combining these methods, we
leverage the strengths of each. The simpler models
provide insights into common patterns, while deep
learning architectures identify more intricate localized
dynamics.

at very high resolution (100 - 1000 meters) are freely
available through sources such as WorldPop and
LandScan, these data only estimate the annual
population at these geographical points. As this
project is making monthly predictions, monthly
population estimates are required for each of the



grid cells. Research has shown the viability of using
nighttime lights to predict population changes.®* %5
Therefore, we use monthly nightlight radiance data to
enhance our estimations of monthly population trends
between known annual population figures.

Data
Annual population data

The population data used for this project are
LandScan modelled population count data, which has
a resolution of 1000 meters, and are available from
2000 to 2024.

Nightlight data

The nightlight data used for this model are satellite
data from two sources, the Defense Meteorological
Satellite Program (DMSP) — Operational Linescan
System (OLS) Nighttime Lights Time Series®¢ and
the Visible Infrared Imaging Radiometer Suite
(VIIRS), specifically VIIRS/NPP Gap-Filled Lunar
BRDF-Adjusted Nighttime Lights Daily L3 Global
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500m Linear.5” The DMSP — OLS Nighttime Lights
offers monthly data at a resolution 30 arc seconds
(approximately 1000 meters) from a series of different
satellites from 1992 through 2014. This project uses
data from the F18 satellite for the years 2010 — 2013.
Monthly data were extracted from VIIRS at native
resolution of 500 meters for nightlight data from 2014
to near present.

Processes

First, the point locations of the population and
nightlight data, are placed within the grids defined by
the project. The annual population figures from points
within each grid cell are then summed to find the total
annual population within each individual 0.1° grid cell
for 2000 to 2024. The monthly nightlight data from
points within each grid cell are averaged to find the
aggregate monthly nightlight for each grid cell from
2000 to near present. This gives each of the grid cells
annual population values from 2000 to 2024 and
monthly values of nightlight radiance from January
2000 to near present.

Archila Bustos MF, Hall O, Andersson M. Nighttime lights and population changes in Europe 1992-2012. Ambio. 2015

Nov;44(7):653-65. doi: 10.1007/s13280-015-0646-8. Epub 2015 Mar 14. PMID: 25773533; PMCID: PMC4591227.
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Nawaj Sarif and Archana K. Roy, “Measuring Urban Shrinkage in India Using Night-Light Data from DMSP-OLS and VIIRS-

NPP Satellite Sensors,” Cities 152 (2024): 105176, https://doi.org/10.1016/j.cities.2024.105176
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data collected by US Air Force Weather Agency.
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averages: 2012 to 2019”, Remote Sensing, 2021, 13(5), 922.
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Figure 19: Gridding LandScan population figures in year 2020 (left), gridded VIIRS nightlight radiance in May
2020 (right).
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The gridded LandScan population data have two
issues; firstly, they only offer population estimates
up to 2024, and secondly, there are no monthly
indicators to build the estimates on. To estimate the
data beyond 2024, recent trends in the population
figure of each grid cell are projected forwards. Each
grid cell uses the most recent years of data to fit a
linear trend for each cell calculating a best-fit line to
predict the population in each cell for 2025.

The LandScan annual population value for each
grid cell is then assigned to December of the
corresponding year, on the assumption that

the annual estimate represents the end-of-year
population. A smoothing technique was then applied
to interpolate monthly population values between
these December anchor points. This smoothing
produces monthly estimates for each grid cell that
follow gradual trends and avoid abrupt jumps in
the rate of population change from one December
to the next.

Once we have the smoothed population data, which
gives the monthly population predictions for each
grid cell, we calculated the average population and
nightlight radiance for each grid cell in each year.
After calculating each grid cell’s annual average
nightlight and the average of the smoothed monthly
population predictions, the deviation for each monthly
nightlight radiance value from the annual mean was
calculated by dividing each monthly nightlight value
by the mean nightlight radiance for that year (1).
Similarly, the deviation for each monthly population
value from the annual mean was calculated by
dividing each monthly smoothed population value by
the mean of the population values for that year (2).
These deviation ratios showed how much brighter
and more populated a given month is relative to that
year’s average level for the grid cell.

monthly nighlight deviation

(1) monthly nighlight deviation =

average nightlight for that year

smoothed LandScan value in month

(2) monthly population deviation =

Next, for each monthly record, the difference is found
between the nightlight deviation from the population

deviation (3).

average population value for that year

(3) dif ference in deviation = monthly nightlight deviation — monthly population deviation

The difference in deviation measures how much
the monthly nightlight signal changed relative to its
annual mean compared to how much the smoothed
monthly population changed relative to the annual
population mean, for the same month.

The population difference was then calculated,
which is the difference between the smoothed
monthly population value and the average population

value for that year (4). Multiplying the difference in
deviation and the population difference (5) produced
a correction term, which indicates how much the
smoothed population should be adjusted based on
nightlight signals. Finally, this correction was added
to the smoothed population (6) to yield a predicted
population value that reflects monthly changes
informed by relative nightlight changes.

(4) population dif ference = smoothed monthly LandScan — average population value for that year

(5) corrected dif ference = difference in deviation x population dif ference

(6) predicted population = smoothed monthly LandScan + corrected dif ference



3.2 Food security model

Overview

Adverse climate conditions can contribute to
situations of food insecurity along with other factors,
such as poor governance, food prices and conflict.
If the food insecurity situation does not improve, it
can be a factor in people’s decision to leave their
homes. Food security can therefore indicate which
people have been affected by adverse climate
conditions caused by slow-onset climate change
and those that may then subsequently be forced to
flee. By using food security as a proxy for estimates
of climate conditions, the power of climate variables
in predicting forced displacement is improved as
they would otherwise be less significant than other
variables such as conflict and state fragility if they
were used directly as feature variables in a model
predicting forced displacement. Regularly updated
food security data are available from sources such
as the Famine Early Warning Systems Network
(FEWS NET) for larger geographical zones from
2011 onwards in 3—4-months intervals. To improve
the granularity of the data and make it useable as a

variable for predicting force displacement, a model

was developed to predict the food security situation
in each of the 0.1° grid cells on a monthly basis from
January 2009 to near present.

Data
Food security data

Through its analysis of current situations and
predictions of future food security situations, FEWS
NET offers historical food security data every 3 or 4
months from 2011 to the near present for certain sub-
national areas, with predictions up to 6 months ahead.
The FEWS NET data are compliant with the Integrated
Food Security Phase Classification (IPC) system of
classifying the food security situation within an area.
The classifications rank from 1 (minimal risk) to 5
(famine). These data are available for all areas within
the focus countries except for Senegal, Cote d’lvoire,
Ghana, Togo, Benin, United Republic of Tanzania,

and Eritrea. Figure 20 below shows the geographical
distribution of food security classes in July 2024 .58

58 IPC classifications, or phases, in order of severity: 1, minimal/ generally food secure; 2, stressed/ borderline food insecure; 3,
crisis/ acute food and livelihood crisis; 4, emergency; 5, catastrophe/ famine.

Figure 20: FEWS NET classifications for July 2024 within the project region.

35



Climate data

Appropriate climatic conditions are necessary for the

development of crops and vegetation for pastoralism.

i i - Child health
Less appropriate climate conditions, such as those
induced through climate change, can compromise the Food security classifications as classified by the
growth of crops and pastoral vegetation, which may IPC focus particular attention on child health and
lead to food insecurity among the local population. malnutrition.®2 In order to account for this, variables
We therefore use several climate variables to for infant mortality rate and prevalence of malnutrition
develop a predictive model for the IPC food security are included in the model. Infant mortality rate counts
classification of each grid cell in each month.®® the number of children per 10,000 which die before

reaching their first birthday. Prevalence of malnutrition

Conflict data is the percentage of children under 5 that are

To account for the potential link between armed malnourished. Both of these variables are extracted
conflict and food insecurity,®° certain conflict variables from the PRIO dataset, which offers data at the 0.5°
were used, based on ACLED data as feature variables grid cell level.

in this model predicting food security.®!

Land use classification

Processes

Variables on the proportion of each grid cell’s area

which is of the different land-use classification
based on Copernicus data. These variables are the
proportion of each grid cell which are: bare area,
cover flooded, cropland, grassland, shrubland, tree
cover, urban, and water.

Because detailed food security data are only
available from 2011 onward, a method was needed to
estimate conditions for earlier years. A backcasting
model was developed for this purpose. Instead of
predicting the future, this model works backward to
fill in earlier months. To prepare the data, the time

State fragility order was reversed so that the most recent month

To account for the fact that food insecurity may be came first, and earlier months followed. This reversal
a function of public mismanagement, instability, and allowed a forecasting approach to be used in reverse,
even coordinated state repression, the fragility index effectively estimating past conditions.

from the Fragile States Index was included as a The data were then split into two sets:

variable in predicting food security.
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« Training set — February 2014 to January 2024,
used for the model to learn patterns.

Climate variables include: mean temperature difference, mean temperature difference over previous 12 months, low killing
days, medium killing days, medium killing day difference over previous 12 months, medium term temperature difference,
heatwave, heatwave current, mean precipitation difference over previous 12 months, heavy precipitation current, heavy
precipitation accumulated, drought current, drought accumulated, heavy precipitation days in the last precipitation peak
month, precipitation in the last precipitation peak month, precipitation in the month, as well as, 2, 3, 4 and 5 months
preceding the last precipitation peak month, precipitation in the month three months preceding the last precipitation peak
month, precipitation in the month four months preceding the last precipitation peak month, precipitation in the month five
months preceding the last precipitation peak month, high temperature days in the last NDVI peak month, high temperature
days in the month proceding the last NDVI peak month, high temperature days in the month two months preceding the
last NDVI peak month, high temperature days in the month three months preceding the last NDVI peak month, high
temperature days in the month four months preceding the last NDVI peak month, high temperature days in the month five
months preceding, as well as, 2, 3, 4 and 5 months preceding the last NDVI peak month.

Cohen, M. J,, & Pinstrup-Andersen, P. (1999). Food Security and Conflict. Food, Nature and Culture, 66(1), 375-416.

Conflict variables include: number of conflict events, number of conflict events in 50 km radius, number of conflict events
involving a rebel group in 50 km radius, number of conflict events featuring state force against civilians in 50 km radius,
number of conflict fatalities within 50 km radius, level of social tension.

IPC Famine Fact Sheet. (2025). Retrieved from Integrated Food Security Phase Classification: https://www.ipcinfo.org/
famine-facts/
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Figure 21: Distribution of food security classifications for training set (left) and test set (right)

o Test set — January 2011 to January 2014, used to
check the model’s accuracy.

Figure 21 shows the distribution of food security
classes among the observations in the training and
testing datasets used for developing the model.

The plots show that there is an imbalance, with

more instances having a classification of 1 (minimal/
no food security risk) and relatively few instances

of classifications of 4 (emergency/ catastrophe/
famine). IPC classifies food security situations into

5 categories. But as the threshold for an area to be
classified as experiencing famine, IPC classification of
5, is very high, we group categories 4 and 5 together.
Both represent situations of extreme food insecurity.

To classify food security levels for earlier periods, a
LightGBM machine-learning model was applied. This
approach is well suited to identifying patterns and
assigning each area to one of several food security
categories. LightGBM is particularly effective because
it can handle large, complex datasets, manage
uneven data, and capture complex relationships
between the feature variables used to predict our
target variable, food security classification in this case,
and the feature variable and target variable itself.
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Results

The overall accuracy of the model in predicting values
on the testing dataset was 0.94. By food security
class, the model has an accuracy of 0.97 at predicting
category 1 (minimal risk), an accuracy of 0.90 at
predicting category 2 (stressed), 0.95 at predicting
category 3 (emergency), and 0.86 at predicting
category 4 (combined with category 5) (emergency/
famine/ catastrophe).

The model also allows us to see the features which
have the most overall importance in predicting the
food security classifications. The LightGBM algorithm
is a tree-based ensemble method, so feature
importance is calculated based on how often and
how effectively a feature is used to split data across
all trees in the ensemble—features that lead to larger
reductions in loss (or higher information gain) are
considered more important.

The feature importance analysis presented in figure
22 provides valuable insights into the key factors
influencing food security in the study region. The
findings highlight the complex interplay between
socio-economic, environmental, and temporal factors
in determining the vulnerability of populations to
food insecurity. The high importance of the fragility
index suggests that areas with weak governance,
social instability, and limited institutional capacity are



Feature

Fragility

Food security in next month after

Time since primary precipitation peak month

Infant mortality rate

Temperature difference

Time since precipitation peak month (primary or secondary)

Temperature difference from baseline over previous 10 years

Low killing days (days above 30°C)

Child malnutrition rate

Food security 11 months after

Food security 3 months after

Food security 4 months after

Food security 2 months after

Medium killing days (days above 35°C)

Mormalized Difference Vegetation Index (NDVI)
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Figure 22: Importance of top 15 features

more susceptible to food insecurity. This underscores
the need for targeted interventions and support in
fragile contexts to build resilience and improve food
security outcomes.

The strong influence of the previous month’s

food security classification on the current month’s
prediction is consistent with the persistent nature of
food insecurity. This temporal dependency indicates
that food insecurity tends to be a chronic issue rather
than a transient one, requiring sustained efforts to
address the underlying drivers and break the cycle
of vulnerability.

The significance of the time since the primary
precipitation peak month highlights the crucial role

of seasonal climate patterns in shaping food security.
As the months progress further away from the peak
rainfall and vegetation growth period, food supplies
may become increasingly strained, leading to a higher
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risk of food insecurity. This finding emphasizes the
importance of climate-sensitive agricultural practices,
such as improved water management and drought-
resistant crops, to mitigate the impact of seasonal
variability on food security.

These models produce two critical outputs: predicted
population and predicted food security, each mapped
to small grid cells and updated every month. This

fine level of detail makes it possible to detect local
changes and short-term trends that might otherwise
be hidden. The integration of the population and food
security models into the overall forced displacement
prediction framework is a crucial step in capturing
the complex pathways through which climate

change and other factors influence displacement
risk. By providing high-resolution, monthly estimates
of population and food security conditions, these
models enable a more granular and dynamic analysis
of the drivers of forced displacement.



3.3 Displacement Gridding Model

Overview

The objective of this final intermediate model was
to place the observations from the PRIMES dataset
into 0.5° grid cells within our region of interest.
Only a third of UNHCR registration records contain
data disaggregated by origin at the administrative
3 level or higher, which prevents undertaking a
comprehensive analysis needed to understand
more localized displacement trends. To estimate
the geographical location of refugee outflows at a
more granular level, we utilize a semi-supervised
learning approach that disaggregates country and
regional refugee counts by 0.5° grid cell resolution.
The approach integrates data from UNHCR’s PRIMES
database with satellite-derived information from
Google Open Buildings®® and location coordinates
from OpenStreetMap Populated Places.®*

Data

Displacement data

UNHCR'’s PRIMES registry represents this study’s
primary source of cross-border displacement
information. Developed in 2002 as a comprehensive
case management tool, PRIMES is a centralized
repository containing information on approximately
18 million registered refugees and asylum-seekers
across more than 130 countries. Each registry

entry contains detailed individual-level data,
including asylum country, arrival date, demographic
characteristics (age, gender, ethnic group), and,
critically, hierarchical place of origin information
spanning administrative levels from the country
(adminO) to country/town/village (admin3).

Building data

Building footprint data from Google Open Buildings
provides information on settlement patterns that
inform the spatial disaggregation process. This

dataset delivers building footprint information derived
from high-resolution satellite imagery processed
through deep learning models. Our methodology
utilizes the centroid point location of each building
footprint to assign structures to corresponding

0.5° grid cells and to administrative districts. This
assignment process enables the approximation of
population distribution patterns within administrative
units and overlapping 0.5° grid cells, thereby creating
the weighting surface necessary for disaggregating
refugee counts from the administrative level to the
grid cell resolution.

Location data

OpenStreetMap Populated Places data complements
the building footprint information by providing specific
geographic coordinates for named settlements.

This dataset offers precise point locations for

towns, villages, and cities across the study region.
These settlement coordinates serve as spatial
anchors for admin3-level place names appearing

in the PRIMES registry. Through a spatial joining
process, we use these data to match available
admin3 entries from refugee records in PRIMES with
corresponding settlement locations, thereby placing
these observations within 0.5° grid cells even when
higher-level administrative boundaries span multiple
grid cells.

Processes

To estimate refugee counts at a fine spatial scale, we
first use building footprint data from Google Open
Buildings as a proxy for population distribution. Each
building footprint is assigned to both an administrative
district (admin level 2) and a 0.5° grid cell based on its
geographic coordinates. This dual assignment allows
us to see how buildings, and therefore people, are
spread across both administrative boundaries and
grid cells. We then group buildings by each unique

63 Google Research. (2022). Open Buildings. Retrieved from https://sites.research.google/open-buildings/

64 Humanitarian OpenStreetMap Team. (2022). OpenStreetMap Populated Places. Retrieved from https://www.hotosm.org/
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admin level 2—grid cell combination and calculate
what share of an admin level 2’s buildings fall into
each cell. These percentages become weights for
redistributing refugee counts from administrative
areas to grid cells.

In parallel, we clean and validate refugee records
from the PRIMES database to ensure accurate
location information. We keep only records with

at least admin 2-level origin data and match their
names to official boundaries, correcting spelling and
naming differences with fuzzy matching (Levenshtein
similarity 270 per cent). Records that still don’t match
are checked against OpenStreetMap populated place
names to assign coordinates and administrative units.
Where all buildings in an admin level 2 area fall within
one grid cell, refugees are directly assigned to that
grid cell. Otherwise, the proportional weights from
the building data guide their distribution. This process
yields two datasets: one where refugee locations

are assigned with certainty, and another where
locations are proportionally modelled across multiple
grid cells. A semi-supervised learning process

then assigns refugee records to 0.5° grid cells

within each administrative area (level 2). For every

admin level 2 area, we first identify the grid cells it
overlaps and calculate how many buildings fall in
each, representing the likely population distribution.
Refugee records are split into two groups: labelled
(with known grid cells) and unlabelled (without).
Labelled records are then combined with the
unlabelled data for modelling.

Using a label-spreading algorithm, known locations
from the training set guide the assignment of
unknown ones. The model spreads location labels
across similar records, using building distributions
and other variables in the PRIMES data to refine
predictions. Over repeated iterations, grid-cell
assignments stabilize, balancing known data with
building-based probabilities.

Figure 23 shows the total amount of displacement by
grid cell among all of the grid cells within the project
region of focus. Of the 6,225 grid cells, 1,777 (28.5 per
cent) have actually experienced any displacement.
This is unsurprising as many grid cells lie within
unpopulated areas of the Sahara Desert and Congo
Basin Rainforests. But some grid cells, such as those
in the Darfur region of Sudan, eastern Democratic

500,000

100,000

10,000

100

10

Figure 23: Total level of displacement by grid cell
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Republic of the Congo and Burundi, Lake Chad, observations into grid cells. Figure 24 illustrates
southern Somalia, Burkina Faso, and Eritrea have the distribution of accuracy across all admin level 2

experienced significant displacement.

Results

Table 1 demonstrates that our approach achieves
strong predictive performance across multiple
statistical metrics, demonstrating the ability of

units in the sample. While accuracy varies among
admin level 2 units, the majority achieve high levels
of predictive accuracy. Moreover, when the model is
combined with deterministically placed observations,
overall performance improves substantially across
all evaluation metrics. This gain highlights the
complementary roles of the deterministic and semi-
supervised components of the methodology.

the cleaning and modelling processes to place

Metric Semi-supervised Modelling Only Combined (Modelled + Deterministic)
Accuracy 0.845 0.929
F1Score 0.837 0.925
Precision 0.842 0.928
Recall 0.845 0.929

Table 1: Performance results of gridding model
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3.4 Predicting displacement

Humanitarian organizations face an increasingly
complex challenge: how to prepare and respond

to situations of forced displacement before they
escalate into crises, amid progressively dwindling
resources. Traditionally, responses have been largely
reactive, with resources mobilized and allocated
once a crisis has already escalated. This approach
often results in higher costs and missed opportunities
to prevent or mitigate worse impacts. To address

this issue, humanitarian organizations need reliable
tools to anticipate, plan, and prepare for forced
displacement events.

To give countries a tool for anticipatory action, we
have developed a predictive model which allows us
to understand localized risks of forced displacement
up to six months in advance. This model is not
intended to work in isolation or to replace human
judgement and expertise. It is meant to serve as

a decision-support tool that can complement the
expertise of field staff and regional institutions. By
specifying areas of high potential displacement up to
six months ahead, the model aims to give additional
information and time to organize resources and plan
interventions to respond effectively.

However, forced displacement is inherently difficult
to predict. The same situations and escalations may
lead to forced displacement in one area and little to
no movement in another. Human decision-making
is not only shaped by immediate risk but also by
cultural ties, social networks, and access to support
which is difficult to capture in quantitative datasets.
Furthermore, the complex interactions between
different factors such as environmental degradation

Variable name

Dependent variable

and conflict can differ from region to region and

are therefore hard to measure in a single model, no
matter how sophisticated. There is also the challenge
of data limitations. Datasets may be incomplete,
biased, or inconsistent across different regions.
Situations can change very rapidly which might not be
reflected in every dataset, leading to additional gaps
and uncertainty.

Data and method

The model draws on more than 180 different
variables, capturing different aspects of the
environment, economic conditions, and conflict.
Climate data includes measures of precipitation,
temperature anomalies and changes, drought indices,
and vegetation health. Geographic variables include
market access, and proximity to borders, which can
influence the scale of refugee movements. Conflict
data contains information on the type, severity,

and frequency of conflict events, including the
associated fatalities. In addition, we also incorporate
the variables from the food security and population
density models, which are described in Chapters

31 and 3.2. We use the predicted food security
classification resulting from the food security model,
which predicts the food security classification in each
0.1° grid cell from January 2009 to the present and we
include the predicted population from the population
density model which obtains gridded predicted
population data through annual population figures
and monthly nightlight radiance. The main dataset
variable categories used and respective sources are
presented in Table 2.

Source

Displacement

Climate variables

Monthly, 0.50° grid cell

UNHCR’s PRIMES Database

Temperature

Daily, 0.05°
Daily, 0.10°
Monthly, 0.25°

CHIRTS
Copernicus ERA-5
Berkeley Earth




Variable name

Precipitation

Unit

Daily, 0.05°
Daily, 0.10°

Source

CHIRPS
Copernicus ERA-5

Normalized Difference Vegetation Index

Monthly, 0.05°

NASA

Standardized Precipitation
Evapotranspiration Index

Monthly, 1.00°

SPEI Global Drought Monitor

Resource and geographic variables

Landcover

Constant, 0.05°

Copernicus

Agro-ecological zone

Constant, defined regions

International Food Policy
Research Institute

Elevation Constant, 0.10° HarvestChoice CELL5M
River Constant, defined regions Natural Earth
Road Constant, defined regions Humanitarian OpenStreetMap

Market access

Constant, 0.10°

International Food Policy
Research Institute

Subsistence Index

Demographic variables

Constant, 0.10°

International Food Policy
Research Institute,

Harvard Dataverse

Population density

Monthly, 0.10°

LandScan, DMSP, VIIRS

Ethnicity

Food security

Constant, 0.10°

ETH Zurich

Predicted food security

Socio-economic and wellbeing variables

Monthly, 0.10°

FEWS NET

Child health

Constant, 0.50°

PRIO

Gini

Political variables

Constant, 0.10°

WorldPop, VIIRS

Fragility

Conflict variables

Annual, national

Fragile States Index

Conflict

Daily, geo-point locations

ACLED

Table 2: Key variable categories used
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The model predicts the risk and scale of forced
displacement from each grid cell at one, three, and six
months into the future. To simplify the interpretation

of risk for humanitarian workers, we implement a
three-category classification scheme that aligns with
operational humanitarian response frameworks:

- Small-scale movements (0-10 persons):

Captures background displacement and minor population movements

« Medium-scale events (11-500 persons):

Represents significant displacement events requiring humanitarian attention

. Large-scale crises (>500 persons):

Identifies major displacement emergencies demanding immediate large-scale response

We use a combination of different models to leverage
their individual strengths and predict the risk of each
displacement level. Our framework includes a tree-
based method as well as several neural networks with
different architectures. Each model is designed to
capture different aspects of displacement patterns at
local and subregional levels.

The tree-based method we have selected is effective
at modelling non-linear temporal relationships and
identifying subtle patterns in complex data. It has
been selected for its computational efficiency and
low memory usage which is particularly important
given the scale of our dataset. One of its strengths
is also its built-in ability to automatically identify the
most relevant variables and filter out less useful
information, allowing us to input all 180 feature
variables and not worry about collinearity and/or
multilinearity negatively impacting model results.

In practice, this makes it a reliable method that
performs especially well when predicting the most
common forced displacement outcomes which

are the small-and medium-scale movements.

Alongside this method, we have developed three
neural network architectures, each designed to
capture both spatial and temporal patterns in the
data. These models analyze how conditions in
specific areas change over time and influence
neighbouring areas, revealing complex patterns that
span across space and time.

The first neural networks, also known as a
convolutional neural network (CNN), uses different
layers which are able to detect short-term changes as
well as longer-term patterns while focusing on local
neighbourhoods within regions.

The other two neural networks are convolutional

long short-term memory models (ConvLSTM), which
combine the two strengths of the CNN with a memory
mechanism that allows them to decide which past
information is important to remember and which

one to discard, basically only remembering the most
relevant information. This makes them well suited to
track displacement risks that build gradually over time
while also capturing sudden events that matter.

The most advanced network of the two is designed

to look at patterns on two levels. At the first level,

it captures local changes such as sudden changes
within a subregion. At the second level, it identifies
larger patterns across larger regions. By combining
these perspectives into one prediction, the model can
account for both more granular detail and the broader
picture which can lead to more reliable predictions.

For the last model we develop an Ensemble
model that combines the individual predictions of
these models into a single forecast. This is done
by evaluating the performance of each individual
model on the test dataset and assigns weights to
their contribution based on their relative accuracy.
Ensemble modelling is a well-established method
which allows us to take advantage of each model’s
strengths.®® This is particularly important given the

65 Brown, D. W. (2023). A Unified Theory of Diversity in Ensemble Learning. Journal of Machine Learning Research 24 , 1-49.



nature of our dataset which ranges from areas with no
or minimal displacement to areas experiencing highly
volatile and complex displacement dynamics.

Finally, all models are evaluated and tested
separately to compare their performance and to
identify the best model for each displacement class
and forecast horizon.®¢ It is important to note that
there is no single model that performs best across

all scales and horizons. For example, the tree-based
model performs particularly well across all horizons
for areas with low or occasional displacement, where
relationships are more stable and less complex. In
contrast, the Ensemble model is better at capturing
higher levels of displacement over all horizons, while
the neural networks are good at capturing escalations
from medium to higher levels of displacements.

This suggests that when large-scale displacement
occurs, more complex interactions are happening
and the model’s ability to model these becomes more
important. The inclusion of neural network models in
the ensemble model greatly improves its accuracy by
enabling it to capture such non-linear relationships
and escalations. Based on these results, the final
model was selected as the tree-based model for low
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Forced Displacement Levels
I Class O - Low Displacement (<10)

Class 1 - Medium Displacement (11-500)

I Ciass 2 - High Displacement (>500)

and medium displacement while the Ensemble model
was selected for the higher displacement class as

its ability to integrate various modelling approaches
allows it to better capture different interactions.

By combining the tree-based method with neural
networks of increasing complexity, our framework
balances efficiency with predictive power.

To ensure that forecasts remain accurate and
reliable, models are re-trained every three months,
incorporating the latest data and trends. This regular
updating allows the system to adapt to changing
conditions on the ground and maintain its usefulness
in humanitarian planning.

What forecasts show

Forecasts generated for February 2025 are displayed
on a map in Figure 20 as an example, with each grid
coloured according to the relative displacement

risk. This visualization allows humanitarian teams to
quickly identify areas where displacement is expected
to be higher, providing an intuitive overview of
potential hotspots. The forecasts are also integrated

Further details of the modelling methodology are provided in Clifdew’s second technical report.

Figure 25: Most likely displacement levels for 6 months ahead for February 2025, made in August 2024.
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Forced Displacement Levels
I Class O - Low Displacement (<10)

Class 1 - Medium Displacement (11-500)

I Class 2 - High Displacement [>500)

Figure 26: Actual displacement levels for February 2025.

into an internal dashboard, developed in consultation
with regional teams to ensure clarity and usability for
operational planning.

For example, the predictions for February 2025,
generated in August 2024, show that the highest
levels of displacement risk are concentrated in
specific regions. In Sudan, the Darfur region stands
out, while Burkina Faso is also prominent. Parts of
eastern Democratic Republic of the Congo (DRC)
and the Lake Chad Basin also show elevated

risk. These predictions closely match with actual
displacement reported in the same month (Figure 25),
demonstrating the model’s ability to identify high-risk
areas well in advance.

To further analyze the accuracy of the predictions,

we calculate a range of performance metrics to
understand where predictions are more, or less
reliable. For the testing period from 2024 to 2025,

we visualized the quality of our predictions by grid for
the 3- and 6-months horizons in Figures 25 and 26.

In these maps, the accuracy of predictions is colour
coded in red, orange, and red, for high, medium, and
low accuracy, respectively. Different shades of colours
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indicate displacement levels, with lighter colours
corresponding to grids with lower displacement,
darker colours to higher levels of displacement, and
grids with dark colour and thick border representing
areas of very high displacement, which are the most
critical for humanitarian planning.

The results show that the final model was able to
accurately predict risk for high displacement areas
such as eastern DRC, Burundi, and Eritrea where
conflict and environmental stressors are major
drivers of movement. Predictions in South Sudan
were also largely accurate. We can also see that the
model performs best in regions with concentrated
displacement patterns, where multiple grids show
similar levels of risk. Isolated high displacement areas
are more difficult to predict, which is expected given
the complex interactions of local drivers. The model
is also correctly predicting areas of very low forced
displacement, avoiding false positive warnings in
those areas as can be seen in Table 3.



Displacement level

Accuracy level

Number of grids

No displacement Low 0
Medium 0
High 5,320

Medium displacement Low 26
Medium 90
High 583

High displacement Low 8
Medium 45
High 149

Table 3: Grid accuracy level by displacement level over the testing period 2024-2025 for horizon 3. The accuracy
is defined as the PR AUC, with 0-0.5, 0.5-0.7, 0.7-1, defined as low, medium and high accuracy respectively.

Overall, the forecasts demonstrate the final model’s
ability to anticipate the three levels of displacement.
Even though the highest displacement level can

at times be challenging to predict, especially in

isolated areas or in parts of Eastern Africa, it generally
performs well in anticipating medium and high
displacement risks up to six months in advance.
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Horizon 6
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Figure 28: Average prediction quality by grid for horizon 6, 6 months into the future. Colour hue shows average
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Figure 29 offers a zoomed-in view of the grid cells
along the border between Northeast South Sudan
and Southeast Sudan, coloured based on the actual
displacement category and quality of prediction. This
area has seen high levels of displacement, especially
since the outbreak of the South Sudanese Civil War
in late 2013, which lasted until 2020. Even though a
peace deal was reached in 2020, escalating violence
risks throwing the country back into civil war.¢” Ethnic
Dinka and Nuer communities border each other in
this area and have suffered high levels of violence
and unrest as the civil war is fought largely between
these two ethnic groups.

The majority of the dark green grid cells that have a
bold border, those with high displacement, are green,
meaning that the model more accurately predicts

the high displacement grid cells. There are only a
handful of bordered grid cells, those with high actual
displacement, that are yellow or red, representing
lower accuracy. The grid cells that are lighter coloured
and not bordered which represent those with lower
displacement levels are more mixed, meaning the
model either accurately predicts low displacement or
overpredicts it.

By accommodating indirect pathways rather

than drawing direct causal lines between climate
conditions and displacement, the modelling
assesses the influence of slow-onset climate events
on displacement indirectly. Intermediate models
convert raw data into indicators theoretically linked
to displacement risk. Monthly population estimates
indicate how many people are present in each grid

67 United Nations, “South Sudan at ‘Turning Point’ Amid Worsening Violence,” UN Press (August 18, 2025), https://press.un.org/

en/2025/sc16146.doc.htm
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Figure 29: Average prediction accuracy across northern South Sudan and
southern Sudan (6-month forecasts)

cell, offering insights into the levels of exposure and
the potential scale of displacement when risk factors
emerge. Food security is incorporated into the model
as itis influenced by climate change and poor food
security undermines livelihoods, potentially triggering
population movements.

Drawing on population density and food security
indicators—alongside data on climate, geography,
demographics, well-being, governance, and conflict—
the final 0.5° grid models produced forecasts up to six
months ahead. This fine spatial resolution, coupled
with an ensemble of complementary methods,

proved essential for capturing the nuanced interplay
of environmental change, conflict, and economic
shocks that shape displacement patterns across
diverse contexts.
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Taken together, the results highlight the value of
integrating tree-based and deep-learning approaches
to balance interpretability with the ability to detect
subtle spatiotemporal dynamics. The high-resolution
predictions generated through this framework
provide not only an empirical basis for anticipating
displacement but also a practical tool for directing
humanitarian resources with greater precision. In
doing so, the modelling approach offers a pathway
for early action and risk reduction as climate-related
pressures continue to intensify.



CHAPTER 4:
How data can inform
humanitarian action

41 the cost of slow-onset events

Voluntary returns to the places of origin are often that exceed human life spans. The temperature
the preferred solution to forced displacement increases documented in Chapter 2.1 represent
once the threat from conflict, violence, or a rapid- changes that are not reversable on any timeline
onset disaster disappears. However, slow-onset relevant to humanitarian planning. Therefore,
environmental degradation operates on timescales the climatic changes described in this report
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establish new permanent baselines rather than
temporary deviations which may make return a less
viable option.

When environmental degradation catalyses conflict,
as documented in the farmer-herder tensions

across the Sahel,®® the underlying climatic drivers
persist even after violence subsides. The Liptako-
Gourma region exemplifies this dynamic: even if the
threat from extremist groups was eliminated, the
degraded pastures and disrupted rainfall patterns
that potentially contributed to the competition for
resources would remain and create stressors that
potentially lead to new tensions when populations
return. The vegetation shifts shown in Figures 10 and
11, particularly the phenological changes disrupting
traditional agricultural calendars, represent ecological
transformations that cannot be reversed through
peace agreements alone.

This creates a fundamentally different displacement
typology. Populations fleeing the impact of
environmental stress and conflict cannot simply wait
for “post-conflict” conditions because the resource
base that previously supported their livelihoods will
remain degraded even after the conflict has abated.
Many of the millions of refugees that have fled from,
among other areas, the Liptako-Gourma and Lake
Chad regions, southwest Cameroon, South Sudan
and Somalia since 2000 may face more permanent
relocation, as the ecological foundation for both
pastoralism and farming in their areas of origin
continues to degrade.

Conflicts that emerge from elite political competition,
military coups, or ideological movements, are

often geographically contained and potentially
resolvable through political settlements. The climate-
catalysed tensions documented in this report
operate differently: they emerge from the bottom

up as thousands of localized resource disputes.
Individually, each dispute is too small to trigger
international attention, but collectively all disputes are
contributing to a reshaping of the continent’s stability
map. The data revealed this transformation starkly.

Another important factor in understanding
displacement is population size and growth rate.
This project’s geography covers large regions, which
have very low populations such as parts of the
Sahara Desert and the Congo Basin Rainforest. Of
the 6,225 grid cells, 497 have a population of 100

or less.®® These low population grid cells have not
yielded any displacement. Another important trend
is the increasing population in the region, which has
coincided with general displacement trends. Based
on the LandScan annual population estimates for
2020, the 1,777 grid cells that have experienced some
displacement had an average population of 320,000
compared to the grid cells that never experienced
displacement, which had an average population

of 90,000 in the same year. So, displacement has
tended to occur in more populated grid cells on
average. As discussed in Chapter 2.1, this project’s
countries of focus have experienced high population
growth. Overall, the grid cells that have experienced
at least some displacement have an average annual
population growth rate of 7.3 per cent between

2001 and 2024. The average annual displacement
change rate during this period was 142.8 per

cent. As discussed above, there have been more
displacement in recent years; of the 1,777 grid cells
experiencing displacement, 47 per cent recorded
their highest monthly displacement level since 2018,
with 33 per cent recording the highest monthly

level between 2021 and 2025. But the average
annual growth rate among the grid cells which have
experienced some displacement was 5.0 per cent
prior to 2018 and 3.1 per cent since 2018, and 3.0 per
cent since 2021. So, the increase in displacement
does not seem fully a function of rapid population
growth within these grid cells.

As degraded areas expand, the number of potential
flashpoints increases. Each failed growing season,
each disrupted pastoral route, and each depleted
water source represent not just local hardship but
also potential displacement that then further strains
receiving areas, potentially triggering secondary
displacement as the host communities’ resilience
erodes because of over population.

68 United Nations Office of the Special Coordinator for Development in the Sahel (OSCDS) and United Nations High
Commissioner for Refugees (UNHCR). (2022). Moving from Reaction to Action - Anticipating Vulnerability Hotspots in

the Sahel.

69 Based on average annual populations from LandScan data between 2000 and 2024.



The convergence of permanent environmental
degradation with conflict and local tensions
fundamentally challenges humanitarian operating
assumptions. The traditional humanitarian

cycle, emergency response, early recovery, and
development, assumes an eventual return to stability.
When slow-onset events drive displacement, this
cycle breaks down. There is no “post-emergency”
phase when temperatures will cool, or rainfall
patterns will stabilise. There is no “early recovery”
when degraded rangelands will restore themselves or
aquifers will refill.

In such a scenario, investment in resilience and
prevention is critical. The seasonal patterns showing
February-May peaks align with pre-planting periods

when interventions could be most effective. Yet
humanitarian funding remains predominantly reactive,
with resources released only after displacement has
commenced.

The evidence presented throughout this report
highlights that mitigating the impacts of slow-

onset environmental changes require short-term
humanitarian support, but longer-term development
funding is equally critical. This includes prioritizing
prevention and anticipatory action. Some population
movements are likely to be permanent and will
require initiatives in hosting locations to minimize the
need for people to move onwards.

4.2 How can humanitarian and development
organizations use the model’s outputs

The evidence from this project shows that slow-onset
environmental changes are presenting increasing
challenges in many locations within the study region,
potentially driving social unrest, conflict and forced
displacement. There are risks that the population
movements may become more permanent. Given
the longer time horizons over which these changes
occur, shorter-term humanitarian support should

be complemented by longer-term development
support. The predictive model developed through this
project (see Chapter 3), although not a standalone
solution, provides such organizations with a tool

to guide their operations. By providing risk levels

at 1, 3, and 6-month intervals for 0.5° grid cells,

the model transforms the patterns documented in
this report into figures that can be incorporated in
operational planning.

One-month prediction horizon

The one-month predictions serve traditional
emergency responses whereby organizations
can gain more precise geographic information for
immediate preparedness. This allows agencies to
identify specific 0.5° (55km?) grid cells from which
the risk of displacement is highest and where
displacement would exceed current operational
thresholds. This would support pre-positioning
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emergency supplies, water treatment units, shelter
materials, medical supplies, close to population
centres in those 0.5° specific grid cells or along routes
that lead from those grid cells.

Three-month prediction horizon

The three-month timeframe allows organizations to
establish and plan operations with a longer lead time.
This could include negotiating access agreements
with local authorities, recruiting and training local staff,
and establishing local partnerships, including building
their capacity to respond and support. A relevant
scenario could be to plan food support activities in
likely destination areas before a harvest, knowing
that there is a high risk that the harvest would not

be sufficient for the local population. This presents
the opportunity to minimize the need for onwards
movements, which then place additional pressure
within the host locations.

Six-month prediction horizon

The six-month timeframe enables longer-term
programming decisions. This can include the
identification of areas where prevention still remains
possible. Grid cells showing moderate but increasing
risk might benefit from resilience investments, such
as borehole rehabilitation, drought-resistant seed



distribution and conflict mediation programmes

that would be much less viable after conflict and/or
population movements have already commenced.
An analysis of the risks in specific areas six months
into the future can inform whether to prioritize
programming that includes prevention in origin areas
or integration support in destination areas. The
longer timelines and evidence base produced from
the outputs of this project can inform discussions
with donors.

Importantly, the model supplements rather than
replaces existing assessment tools. Organizations
should integrate model predictions with:

« Community feedback mechanisms or direct
observations that validate the risk model
generated within this project.

« Operational data and knowledge, including
return intention surveys. This should include
data from other relevant actors.

- Other analytical projects, e.g. those developed
through inter-agency coordination efforts.

Updates to the model on a monthly basis enables
adaptive management of situations. If 6-, and 3-month
predictions prove accurate for certain regions but

4.3 The path forward

The evidence presented throughout this report
reveals that the impact of climate change is not
uniform. As shown in Chapter 2, the western Sahel
zone faces the risk of both increased drought and
extremely high precipitation patterns, with different
areas experiencing these issues to various degrees.
Meanwhile, much of the Sahel shows improvement

in several metrics such as an increase in vegetation,
partly due to successful interventions such as farmer-
managed natural regeneration. The Horn of Africa
exhibits a pattern of extreme variability, which creates
cycles of drought and flooding that defy traditional
seasonal patterns. These spatial variations require
differentiated responses; rather than treating the
entire region as equally vulnerable, responses should
be calibrated to specific local conditions.
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not others, organizations can adjust their confidence
levels or the model parameters accordingly. This
iterative learning improves both the utility of the
model as well as the operational response.

Anticipating rather than reacting to forced
displacement events will require operational
adaptations. The outputs from the model will help

to improve planning the release of funds, better
ensuring the required budgets for responses are
available. Field activities can be planned based on
the predictions in addition to current needs, and
indicators of successful interventions should include
displacements that was prevented as well as those
that have been assisted. The convergence of growing
areas of permanent environmental degradation

and increasing numbers of local-level conflicts and
disputes, will likely lead to forced displacement
levels rising over the longer term in the study region.
Predictive tools such as the one presented here

are likely to become much more widely used, with
organizations cognizant of such tool limitations as
well as recognizing the potential of the insights that
can be derived from their use.

Of the 6,225 grid cells in our study region, only 1,777
have experienced forced displacement since 2000.
Slow-onset climate-induced displacement is not an
automatic consequence of environmental change

but emerges when climate stress converge with
other drivers such as weak governance, resource
competition, and/or pre-existing conflict. The variation
in levels of displacement could reflect differences

in the environment, governance capacity, economic
resources, social cohesion, and traditional adaptation
mechanisms. Identifying the specific drivers enables
targeted interventions where the risk of displacement
is especially high.

This report documents an acceleration in
displacement - 47 per cent of cells reaching peak
displacement after 2018, the widening of the period
within years during which forced displacement
typically occurs and the growing geographic extent



of the displacement. Yet there is also an opportunity
to apply the approach set out in this model to better
assess, how, where and when to respond.

The output of the model supports a differentiated
response and can be used to assess areas requiring
an emergency response, areas where prevention
remains possible, areas that require longer-term
development support and areas that are successfully
adapting without external support. In all cases,

the model output also helps to assess when these
responses would be required, including e.g. potential
support in specific seasons if harvest are likely to be
insufficient.

These distinctions are made possible through
systematic data analysis of the outputs of the
predictive model developed through the CLIFDEW-
GRID project, which has the potential to transform
these insights into operational data. By providing
displacement risk level at 1-, 3-, and 6-month intervals
for each 0.5° grid cell, the model outputs can guide
humanitarian and development responses. The
outputs include specific predictions on which cells
face imminent risks, and when the displacement

is most likely to occur. The outputs can be quickly
refined to improve subsequent monthly updates.
Organizations using the model outputs can help
refine the accuracy of the predictions through

ground truthing during planning phases and while
responding. The model itself attempts also to improve
the accuracy of the outputs by learning from each
cycle. The model outputs are certainly not perfect but
are grounded with remote sensing data and other
reliable sources.

CLIFDEW-GRID enables humanitarian and
development organizations to optimise how they
utilise their resources in order to better address the
challenges presented throughout this report. For cells
showing high risks within one month, organizations
can pre-position emergency supplies in predicted
destination areas. Three-month predictions allow

the establishment of operational infrastructure—
partnerships, personnel recruitment and organizing
coordination mechanisms—before displacement
occurs. The six-month outlooks help to identify where
investment in prevention might mitigate the need

for people to move onwards or that the investment
would be more effective in likely areas of destination.
By identifying cells with the highest displacement

54

risk, the model highlights where prevention remains
possible, and by showing sustained risk in origin
areas, it indicates where to best target assistance.
Through using this tool, organizations need no longer
wait for displacement to occur and can instead
anticipate when and where to respond and plan the
most effective approach.

Climate change will continue reshaping Africa’s
environmental landscape. Temperatures will

continue to rise, rainfall patterns will shift, and
environmental stresses will intensify in many areas.
But as the CLIFFDEW-GRID model outputs show,
displacement is not an inevitable consequence. The
tool helps to identify those areas with high risks of
forced displacement, informing less reactive, more
anticipatory responses. As displacement patterns
grow more complex and widespread, driven in part
through climate change, tools that transform data into
foresight will become increasingly essential to protect
and support vulnerable populations.
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