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Executive Summary

1 “Climate Migrants Might Reach One Billion by 2050,” Inter Press Service, August 21, 2017, https://www.ipsnews.net/2017/08/
climate-migrants-might-reach-one-billion-by-2050/

2 See, S., Opdyke, A., & Banki, S. (2025). A review of the climate change-disaster-conflict nexus and humanitarian framing of 
complex displacement contexts. Climate and Development, 1-14. doi:https://doi.org/10.1080/17565529.2025.2514027

We live in a world confronted with the impacts of 
interacting climate change and forced displacement 
crises. Millions of people are being forced to flee 
because of conflicts, violence, and persecution, and 
many of them have simultaneously been impacted 
by slow-onset or sudden-onset weather events, 
exacerbated by climate change. Given the likely 
scenario of an average global increase in temperature 
of more than 2°C compared to pre-industrial 
temperatures by the end of the century, the potential 
impact on livelihoods will be significant and likely 
to result in greater numbers of people being forced 
to flee. Estimates ranging between 200 million to 1 
billion people are regularly cited in the media and 
academic literature.1 However, empirical evidence 
for such severe scenarios remains sparse. Instead, 

as climate change incrementally progresses, the 
evidence points towards more nuanced changes in 
human mobility patterns.2

The potential impact of climate change on forced 
displacement occurs through both rapid and slow-
onset events, each operating in distinct ways. 
While rapid-onset disasters like storms and floods 
typically generate immediate and often temporary 
displacement, slow-onset changes such as rising 
temperatures, drought, desertification, and sea-level 
rise have the potential to create more systematic and 
long-term displacement patterns, depending on the 
context in which they occur. These gradual climate 
shifts can contribute to economic instability, food 
insecurity, competition for resources, and political 
instability over extended periods, with the impact felt 

Figure 1: Map of project region 
embedded in map of Africa. 
The countries outlined in black 
are included.

https://www.ipsnews.net/2017/08/climate-migrants-might-reach-one-billion-by-2050/
https://www.ipsnews.net/2017/08/climate-migrants-might-reach-one-billion-by-2050/
https://doi.org/10.1080/17565529.2025.2514027
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most by already vulnerable populations. However, 
those engaging in climate-related mobility due to 
slow-onset climate events remain largely overlooked 
in statistical analyses, as clearly establishing a link 
between climate change and displacement remains 
very challenging.

To shed more light on the climate-displacement 
nexus, UNHCR developed a machine learning (ML) 
model to anticipate and prepare for slow-onset 
climate-induced displacement across East, Central, 
and West Africa.3 The climate crisis is particularly 
acute in these regions, where many states lack the 
necessary resources for adaptation. The model uses 
individual data on refugees and asylum-seekers 
registered by UNHCR after crossing a national 
border as the main dependent variable for analysis 
and modelling. The target variable being predicted 
in this work is therefore cross-border displacement. 
While internally displaced people (IDPs) generally 
outnumber those displaced across an international 
border,4 internal displacement data was not available 
at the temporal and geo-spatial granularity sought 
after for this project and therefore were not included. 
As the individuals in UNHCR’s registration database 
are refugees and asylum-seekers, forcibly displaced 
people in this report refers to those forcibly displaced 
across an international border due to persecution, 
conflict, violence, human rights violations and events 
seriously disturbing the public order.5

3 The 25 countries of focus include: Angola, Benin, Burkina Faso, Burundi, Cameroon, Central African Republic, Chad, Côte 
d’Ivoire, Democratic Republic of the Congo, Eritrea, Ethiopia, Ghana, Kenya, Mali, Mauritania, Niger, Nigeria, Rwanda, 
Senegal, Somalia, South Sudan, Sudan, Togo, Uganda, and United Republic of Tanzania. Certain countries in this region are 
left out due to a lack of displacement data, these include Equatorial Guinea, Gabon, The Gambia, Guinea, Guinea-Bissau, 
Liberia, Republic of the Congo, and Sierra Leone. The small island countries of Cabo Verde, Comoros, São Tomé and 
Príncipe and Seychelles are also not included due to their small size.

4 Based on conflict-induced IDP data from the Internal Displacement Monitoring Centre (IDMC), 89.1 million people were 
internally displaced within the 25 countries that this project focuses on between 2009 and 2024. Over this same period, 
there were 10.4 million individuals registered in UNHCR PRIMES for these countries.

5 It is noteworthy that in 2020 UNHCR developed a document containing legal considerations concerning the applicability 
of international and regional refugee and human rights law to claims for international protection when cross-border 
displacement occurs in the context of the adverse effects of climate change and disasters. The document clarifies that 
“the assessment of claims for international protection made in the context of the adverse effects of climate change and 
disasters should not focus narrowly on the climate change event or disaster as solely or primarily natural hazards. Such a 
narrow focus might fail to recognize the social and political characteristics of the effects of climate change or the impacts 
of disasters or their interaction with other drivers of displacement. More broadly, climate change and disasters may have 
significant adverse effects on State and societal structures and individual well-being and the enjoyment of human right.” 
(https://www.refworld.org/policy/legalguidance/unhcr/2020/en/123356)

6 There are 6,225 grid cells within the project region of interest.

The novelty of this project lies in the temporal 
and geospatial precision of the data, from which 
predictions of forced displacement are made. 
Temporally, the project focuses on monthly time 
intervals. The geospatial focus of the analysis are 
0.5° grid cells, which are approximately 55 km2.6 This 
geospatial precision is more granular than national 
and even subnational analyses and predictions that 
are typically made regarding forced displacement. 
Additionally, feature variables used for predicting the 
cross-border forced displacement such as climate, 
food security, socio-demographic, and conflict are 
aggregated to the 0.1° grid cell unit, approximately 11 
km2, which allows for even more granular analysis. 

In this project, the predictions are generated by an AI 
model that combines tree-based models and different 
types of neural network architectures to handle 
the spatial dependencies and temporal dynamics 
inherent in displacement events to predict forced 
displacement outflows for each 0.5° grid cell. The AI 
model enables monthly displacement predictions up 
to six months ahead across three magnitude levels: 
small-scale movements (0-10 people), medium-
scale events (11-500 people), and large-scale crises 
(>500 people). 

Overall, the predictive accuracy is reasonably high, 
decreasing slightly with longer forecast horizons. On 
the test dataset, the accuracy of the predictions is 
around 99 per cent and 85 per cent for small-scale 
and medium-scale displacement, respectively, while 
the AI model manages to correctly predict more than 

https://www.refworld.org/policy/legalguidance/unhcr/2020/en/123356
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53 per cent of large-scale displacement events up to 
six months in advance. However, large-scale crises 
remain more difficult to predict, and the AI model 
tends to generate more false negatives for large-scale 
events than false positives, reflecting a tendency to 
underpredict these events. 

These results highlight the potential of this approach 
to provide relatively reliable forecasts of forced 
displacement up to six months beyond the timeframe 
of the source dataset. By providing spatially and 
temporally granular predictions, the framework offers 
humanitarian organizations a tool to strengthen 
early warning systems and support anticipatory 
action. Ultimately, these predictions can enhance 
preparedness and resilience in regions that are most 
vulnerable to the risks of climate change and forced 
displacement. 

This report consists of four chapters. Chapter 1 
discusses the theoretical linkages between climate 
change, migration, and forced displacement, and 
the findings of previous research investigating 
these linkages. Chapter 2 offers an analysis of the 
climate conditions within the region this project is 
focused on, as well as historical forced displacement 
trends. Chapter 3 details the modelling approaches 
used for the intermediate models used to grid 
the displacement data and predict the population 
and food security within the grid cells at monthly 
intervals. The chapter also describes the AI model 
for predicting forced displacement outflows from 
the grid cells in the future. Chapter 4 sets out how 
this research can be applied in practice, explaining 
how this project and the findings generated from 
it can be used by UNHCR and other humanitarian 
and development organizations for better targeting 
investments in resilience and preparedness. 
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Key terms

7 United Nations Framework Convention on Climate Change (UNFCCC). (2024). Technical guide on integrating human 
mobility and climate change linkages into relevant national climate change planning processes. UNFCCC. https://unfccc.int/
sites/default/files/resource/WIM_ExCom_human-mobility_TFD_2024.pdf

8 Center for Integrative Research in Computing and Learning Sciences (CIRCLS). (2024). Glossary of Artificial Intelligence 
Terms for Educators. https://circls.org/educatorcircls/ai-glossary

9 United Nations Framework Convention on Climate Change (UNFCCC). (2024). Technical guide on integrating human 
mobility and climate change linkages into relevant national climate change planning processes. UNFCCC. https://unfccc.int/
sites/default/files/resource/WIM_ExCom_human-mobility_TFD_2024.pdf

10 Carnegie Council for Ethics in International Affairs. (2025). Climate mobility. Carnegie Council. https://www.carnegiecouncil.
org/explore-engage/key-terms/climate-mobility?utm_source=chatgpt.com

11 Center for Integrative Research in Computing and Learning Sciences (CIRCLS). 2024. Glossary of Artificial Intelligence Terms 
for Educators. https://circls.org/educatorcircls/ai-glossary

12 United Nations Framework Convention on Climate Change (UNFCCC). (2024). Technical guide on integrating human 
mobility and climate change linkages into relevant national climate change planning processes.

13 United Nations High Commissioner for Refugees (UNHCR). (n.d.). Master Glossary of Terms. Retrieved from https://www.
unhcr.org/glossary

14 United Nations (UN). (n.d.). System of Environmental-Economic Accounting. Retrieved from https://seea.un.org/
ecosystem-accounting

15 Brown, D. W. (2023). A Unified Theory of Diversity in Ensemble Learning. Journal of Machine Learning Research 24, 1-49.

16 United Nations High Commissioner for Refugees (UNHCR). (n.d.). Master Glossary of Terms. Retrieved from https://www.
unhcr.org/glossary

Anthropogenic climate change — Climate change 
driven primarily by human activities such as 
greenhouse gas emissions and industrial processes.7

Artificial Intelligence (AI) — A branch of computer 
science using hardware, algorithms, and data to 
create “intelligence” to do things like make decisions, 
discover patterns, and perform some sort of action.8

Climate change — A change in the state of the climate 
that can be identified (such as by using statistical tests) 
by changes in the mean and/or the variability of its 
properties and that persists for an extended period, 
typically decades or longer. Climate change may be 
due to natural internal processes or external forces 
such as modulations of the solar cycles, volcanic 
eruptions and persistent anthropogenic changes in the 
composition of the atmosphere or land use.9

Climate-related mobility — Human movement 
(voluntary or forced) influenced partly or entirely by 
climate or environmental change.10

Deep learning — A subset of machine learning 
using multilayer neural networks capable of learning 
complex, hierarchical representations.11

Disaster displacement — Refers to situations where 
people are forced or obliged to leave their homes or 
places of habitual residence as a result of a disaster 
or in order to avoid the impact of an immediate and 
foreseeable natural hazard.12

Displacement — The movement of persons who have 
been forced or obliged to flee or to leave their homes or 
places of habitual residence (whether within their own 
country or across an international border), in particular 
as a result of or in order to avoid the effects of armed 
conflict, situations of generalized violence, violations of 
human rights or natural or human-made disasters.13

Ecosystem services — The benefits people obtain from 
ecosystems, such as fertile land and precipitation.14

Ensemble model — A machine learning approach 
that combines multiple models to improve predictive 
accuracy and robustness.15

Forced displacement — The involuntary movement 
of people from their homes due to persecution, 
conflict, generalized violence, human rights 
violations or the adverse effects of climate change, 
environmental degradation, or disasters.16

https://unfccc.int/sites/default/files/resource/WIM_ExCom_human-mobility_TFD_2024.pdf
https://unfccc.int/sites/default/files/resource/WIM_ExCom_human-mobility_TFD_2024.pdf
https://circls.org/educatorcircls/ai-glossary
https://unfccc.int/sites/default/files/resource/WIM_ExCom_human-mobility_TFD_2024.pdf
https://unfccc.int/sites/default/files/resource/WIM_ExCom_human-mobility_TFD_2024.pdf
https://www.carnegiecouncil.org/explore-engage/key-terms/climate-mobility?utm_source=chatgpt.com
https://www.carnegiecouncil.org/explore-engage/key-terms/climate-mobility?utm_source=chatgpt.com
https://circls.org/educatorcircls/ai-glossary
https://www.unhcr.org/glossary
https://www.unhcr.org/glossary
https://seea.un.org/ecosystem-accounting
https://seea.un.org/ecosystem-accounting
https://www.unhcr.org/glossary
https://www.unhcr.org/glossary
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Grain formation — The phase in crop development 
during which grains (such as wheat or rice kernels) 
develop and fill, determining yield.

Hydroclimatic whiplash — Rapid shifts between 
extreme dry and extreme wet conditions within a 
short timeframe.17

Integrated Food Security Phase Classification (IPC) 
— A global, evidence-based system that categorizes 
the severity of food insecurity into standardized 
phases to guide humanitarian action.18

Internally displaced people — A person who has 
been forced or obliged to flee from their home or place 
of habitual residence, in particular as a result of or in 
order to avoid the effects of armed conflicts, situations 
of generalized violence, violations of human rights or 
natural or human-made disasters, and who has not 
crossed an internationally recognized State border.19

Liptako-Gourma — Area along the borders between 
the countries Burkina Faso, Mali, and Niger.

Neural network model — A computational model 
composed of interconnected layers of nodes 
(“neurons”) that learn patterns from data.20

17 Swain, D. L., Prein, A. F., Abatzoglou, J. T., Albano, C. M., Brunner, M., Diffenbaugh, N. S., . . . Touma, D. (2025). Hydroclimate 
volatility on a warming Earth. Nat Rev Earth Environ, 6, 35-50. doi:https://doi.org/10.1038/s43017-024-00624-z

18	 IPC Famine Fact Sheet. (2025). Retrieved from Integrated Food Security Phase Classification: https://www.ipcinfo.org/
famine-facts/

19 United Nations High Commission for Refugees (UNHCR). (n.d.). Master Glossary of Terms. Retrieved from https://www.unhcr.
org/glossary

20 Center for Integrative Research in Computing and Learning Sciences (CIRCLS). 2024. Glossary of Artificial Intelligence Terms 
for Educators. https://circls.org/educatorcircls/ai-glossary

21 USA National Phenology Network (USANPN). (n.d.). Glossary. Retrieved from https://www.usanpn.org/nn/glossary

22 United Nations High Commission for Refugees (UNHCR). (n.d.). Registration and identity management. Retrieved from 
https://www.unhcr.org/what-we-do/protect-human-rights/protection/registration-and-identity-management

23 United Nations Framework Convention on Climate Change (UNFCCC). (2024). Technical guide on integrating human 
mobility and climate change linkages into relevant national climate change planning processes. UNFCCC. https://unfccc.int/
sites/default/files/resource/WIM_ExCom_human-mobility_TFD_2024.pdf

24 Ibid.

25 IGAD Centre for Pastoral Areas and Livestock Development (ICPALD). (2020). IGAD Protocol on Transhumance. 
Intergovernmental Authority on Development (IGAD). https://icpald.org/wp-content/uploads/2021/06/IGAD-PROTOCOL-ON-
TRANSHUMANCE-Final-Endorsed-Version.pdf

26 Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., … Duchesnay, É. (2011). Scikit-learn: Machine 
learning in Python. Journal of Machine Learning Research, 12, 2825–2830. https://jmlr.org/papers/v12/pedregosa11a.html

Phenological analysis — The study and 
interpretation of the timing of recurring biological 
events (such as flowering, leaf-out, or migration) and 
how they are influenced by environmental conditions, 
especially climate.21

Population Registration and Identity Management 
Eco-System (PRIMES) — UNHCR’s registration of 
refugees and asylum-seekers.22

Rapid (sudden)-onset climate events — Short-
timescale hazard events such as floods, storms, 
or heatwaves that occur abruptly and cause 
immediate impacts.23

Slow-onset climate events — Gradual environmental 
changes like sea-level rise, desertification, or 
increasing drought that unfold over long periods.24

Transhumance corridors (routes) — Seasonal 
migration pathways used by pastoralists to move 
livestock between grazing areas and water sources.25

Tree-based model — A machine learning method that 
makes predictions by recursively splitting data into 
decision “branches” using features.26

https://doi.org/10.1038/s43017-024-00624-z
https://www.ipcinfo.org/famine-facts/
https://www.ipcinfo.org/famine-facts/
https://www.unhcr.org/glossary
https://www.unhcr.org/glossary
https://circls.org/educatorcircls/ai-glossary
https://www.usanpn.org/nn/glossary
https://www.unhcr.org/what-we-do/protect-human-rights/protection/registration-and-identity-management
https://unfccc.int/sites/default/files/resource/WIM_ExCom_human-mobility_TFD_2024.pdf
https://unfccc.int/sites/default/files/resource/WIM_ExCom_human-mobility_TFD_2024.pdf
https://icpald.org/wp-content/uploads/2021/06/IGAD-PROTOCOL-ON-TRANSHUMANCE-Final-Endorsed-Version.pdf
https://icpald.org/wp-content/uploads/2021/06/IGAD-PROTOCOL-ON-TRANSHUMANCE-Final-Endorsed-Version.pdf
https://jmlr.org/papers/v12/pedregosa11a.html
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CHAPTER 1: 

The Big Picture 

1.1 Overview of climate trends in Africa   

27 He, C., Zhu, Y., Guo, Y., Bachwenkizi, J., Chen, R., Kan, H., & Fawzi, W. W. (2025). Escalated heatwave mortality risk in sub-
Saharan Africa under recent warming trend. Science Advances, 11(48).

Africa has experienced some of the most pronounced 
warming trends globally, with temperatures 
increasing at approximately 1.5 times the global 
rate.27 Current climate models show that as global 

temperatures keep increasing, there will be a 
profound redistribution of ecosystem services across 
the world. These changes in ecosystem services 
hold potential disadvantages, and in some cases 

© UNHCR/Charity Nzomo
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advantages, for local populations depending on the 
many, often non-linear, relationships between climatic 
variables and other factors, particularly factors in the 
primary sector such as agriculture and fishing. For 
example, per-hectare yields for most grains follow an 
inverted U-shaped relationship with climate variables 
such as temperature and precipitation. A similar 
relationship exists between temperature and dairy 
production, with productivity starting to decrease 
once temperatures pass an optimal threshold. Rising 
sea temperatures also impact the movements of 
migratory fish, which, for many coastal populations, 
are both an essential staple food and a primary 
source of income. Whilst some regions may benefit 
from increasing temperatures and precipitation, 
most regions will experience a considerable decline 
in agricultural and fishery productivity as the local 
ecosystem services decline.

The impact of climate change on human mobility is 
complex, but it manifests itself mainly through two 
broad channels: an increase in the frequency and 
intensity of sudden-onset events, like storms, floods, 
and wildfires, and a higher risk for slow-onset events, 
like droughts, changes in precipitation patterns, loss 
of ecosystems, and salinisation of coastal areas due 
to rising sea levels. Both types of events can lead to 

changes in human mobility by aggravating multiple 
causes of forced displacement both within and across 
borders, especially where the ability to adapt is low 
and vulnerability is high. 

Natural hazards from rapid-onset climate events 
usually lead to a displacement of short duration 
and limited geographic scope, but more intense 
and frequent natural hazard events can deplete a 
household’s capital assets over time, reducing its 
general resilience and adaptability to more gradual 
environmental changes. At the same time, slow-
onset events may lead to ecosystem degradation, 
particularly impacting households that depend on 
rain-fed agriculture. Technology solutions can replace 
many deteriorating ecosystem services (e.g., flood 
protection, irrigation systems, crop rotation systems, 
drought-resistant varieties, storm shelters, and 
others), though often at considerable financial costs. 
Consequently, given the considerable resources 
needed to implement these solutions, poor and 
marginalized population segments will experience a 
loss of livelihood and quickly reach their coping limits 
in the face of deteriorating ecosystems. As discussed 
in the following sections, the loss of livelihoods due to 
slow-onset climate change events is a potential factor 
contributing to mobility and forced displacement. 

BOX 1: What are slow-onset climate events? 

What are slow-onset climate events? Unlike sudden onset disasters (floods, storms, landslides, wildfires), 
that generally lead to sudden and usually short-term displacement within a limited geographic area, slow-
onset events develop gradually over months, years, or decades. Examples include:

•	 Rising average temperatures

•	 Changing precipitation patterns

•	 Increases in the occurrences of drought and desertification

•	 Land and forest degradation

•	 Sea level rise and coastal erosion

•	 Glacial retreat

These gradual changes often have little noticeable impact until they cross critical thresholds, at which 
point entire areas can become uninhabitable or livelihoods can be impacted. Unlike sudden-onset events 
that immediately force people from their homes, slow-onset events progress at a speed that can allow 
households to adapt to changing circumstances. Adaptation can happen in situ, however when climate 
conditions pass a certain threshold, migration may be the only solution.
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1.2 When people are forced to move  

28 See, Opdyke, and Banki, “A Review of the Climate Change-Disaster-Conflict Nexus and Humanitarian Framing of Complex 
Displacement Contexts.”

29 Intergovernmental Panel on Climate Change (IPCC). (2022). Climate Change 2022: Impacts, Adaptation and Vulnerabilities. 
Intergovernmental Panel on Climate Change.

Cross-border forced displacement in Africa stems 
from multiple interconnected causes. While conflict 
and violence generally remain the primary drivers, 
they may be exacerbated by slow-onset climate 
events, which increasingly act as multipliers that 
intensify existing vulnerabilities and contribute to 
events that trigger displacement. 

The primary drivers of forced displacement include:

•	 Conflict and violence: Armed conflicts, 
including extremist insurgencies, inter-
communal violence, and civil wars, constitute 
the largest displacement driver. The Lake 
Chad Basin, the Sahel region, and Horn of 
Africa have experienced particularly high 
conflict-driven displacement.

•	 Political persecution and human rights 
violations: Authoritarian governance, ethnic 
discrimination, and targeted persecution force 
populations to seek safety across borders.

Additional indirect causes of forced 
displacement include:

	» Economic collapse: Livelihood failure, 
particularly in agricultural communities, leads 
to further stressors when households exhaust 
coping mechanisms.

	» Resource competition: Disputes over land, 
water, and grazing rights between different 
user groups, particularly farmers and 
pastoralists, trigger localized tensions.

Given these drivers of forced displacement, 
slow-onset climate events do not typically cause 
displacement in isolation. Instead, they interact with 
and intensify these existing drivers in multiple ways.28 
Communities can often adapt to slow-onset changes 
through technical solutions such as planting drought 
resistant crops, improved water management, or 
adjusting the timing of planting and harvesting 
cycles. But, when slow-onset climate change impacts 

areas where people are already subject to high 
level of poverty and underlying group tensions, 
resource scarcity induced by changing precipitation 
patterns and rising temperatures have a potential to 
heighten tensions between groups that compete for 
these resources. These developments can amplify 
preexisting tensions that might otherwise remain 
manageable.29 In the Liptako-Gourma region along 
the borders of Mali, Burkina Faso and Niger, for 
example, decreased rainfall and vegetation loss have 
potentially been a factor in intensified farmer-herder 
conflicts, contributing to some of the over 233,000 
displaced persons who have fled their homes as 
refugees between 2000 and 2025 (see box 2).

Figure 2 shows the theoretical linkage between 
slow-onset climate events and conditions and human 
mobility, which can materialize in several phases, 
potentially leading to forced displacement: 

•	 Immediate impacts: Extreme heat and 
significant changes in precipitation patterns 
directly threaten agricultural yields and livestock 
survival. When crops fail repeatedly or pastures 
become unusable, households lose their 
primary source of income and may become 
food insecure. Rural families, who depend 
entirely on rain-fed agriculture or vegetation 
and dependable water for their livestock, find 
themselves with diminishing options as each 
failed season depletes their resources further. 

•	 Cascading effects: Temperature increases, 
prolonged drought, or heavily concentrated 
rainfall may force people to change their 
behaviour. As water sources dry up, herders 
must travel further distances to find water 
and pasture for their animals. Meanwhile, 
traditional coping mechanisms that once helped 
communities weather difficult periods, such as 
selling livestock assets or relying on extended 
family support, become exhausted when entire 
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regions face the same pressures simultaneously. 
Those that can may send some members 
of the family to urban centres to find other 
forms of work.

•	 Tipping points: Herders who engage in 
extended movements, taking their livestock 
outside their traditional territories, possibly and 
into more agricultural areas, increase the risk 
of conflict with farming communities. If these 
conflicts occur along group or ethnic lines, 
where tensions and prejudices pre-existed, 
they may boil over into violence. These risks 
radicalizing people further and creating cycles 
of violence and reciprocal violence. Meanwhile, 
mass movements of people from rural to urban 

30 United Nations High Commissioner for Refugees (UNHCR). (2025). No Escape II: The Way Forward. Bringing climate 
solutions to the frontlines of conflict and displacement. United Nations High Commissioner for Refugees.

areas may strain limited resources in cities. 
Combined with limited food supplies because of 
decreased productivity in agricultural areas, this 
risks creating grievances among people against 
others and public institutions, and escalating 
violence, both in rural and urban settings, 
possibly forcing people to become displaced. 
Climate change may also create challenges to 
durable solutions and increase the vulnerability 
of already displaced communities, leading to 
further onwards movements and protracted 
displacement situations.30 

Figure 2: Connection of slow-onset climate change events with primary migration 
displacement drivers.
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BOX 2: Liptako-Gourma: Climate stress and rising tensions

As in much of Africa, temperatures in the Sahel, which lies south of the arid Sahara Desert, are climbing 
faster than the global average. Additionally, the region is experiencing increasingly erratic rainfall patterns. 
While overall precipitation across the Sahel may be increasing due to climate change,31 it is now often 
in the form of sudden, heavy rainfalls that causes soil erosion rather than replenishing groundwater. 
Precipitation of this kind delays and disrupts traditional planting cycles instead of nurturing vegetation. 
Additionally, localized land degradation occurs in heavily used areas, particularly around water points and 
along constrained transhumance corridors. These traditional transhumance routes that long sustained 
pastoral communities are becoming unviable as water points dry up and pastures degrade. 

The Sahel region has also experienced heightened levels of conflict in recent years. One area within the 
Sahel of particular concern is the Liptako-Gourma region, which is the border area of Mali, Niger, and 
Burkina Faso. UNHCR registered over 233,000 refugees and asylum-seekers from the Liptako-Gourma 
region between 2000 and 2025.32 

As traditional grazing areas deteriorated, many pastoralists have been forced to move their herds to new 
grazing areas, bringing them into direct conflict with farming communities. At the same time, amid a reality 
of a lack of formalized land registration and land titles33, farmers have taken over grazing areas in response 
to soil depletion and the demand for land amid rapid population growth. These factors have all contributed 
to disrupting traditional resource-sharing arrangements. As a result, some farmers saw herders as a 
nuisance or even a threat. Meanwhile, many pastoralists saw the farms as encroaching on their traditional 
land. These overlapping claims have created flashpoints for violence in the Liptako-Gourma region.

Resource competition alone, however, does not explain the scale of violence that has been observed over 
recent years. Many of these conflicts take an ethnic dimension, particularly between Fulani pastoralist 
communities and farming groups like the Dogon and Bambara in Mali. In recent years, many Fulani 
pastoralists have felt marginalized and accused of supporting criminal activities, further inflaming tensions.34 
Armed groups, made up, at least partially, of disgruntled Fulani youths, have engaged in activities targeting 
both farmers and other pastoral communities. ACLED reports 16,000 conflict events in the Liptako-Gourma 
region from 2000 to 2024, with 900 conflict events featuring people of Fulani ethnicity, either as civilians 
under attack or as ethnic militias. 

The bar plot in Figure 3 shows the annual cross-border displacement from the Liptako-Gourma region. 
The grey bars show almost no displacement up to 2012, and then a sudden rise in displacement to over 
37,000 people, corresponding with the outbreak of the civil war in Mali in 2012. The level of cross-border 
displacement decreased after 2012, but has steadily been rising in the years since, reaching its highest 
levels in 2024 with over 44,000 refugees from the region, most of them coming from Burkina Faso. The 
number of conflict fatalities and high temperature days over the previous 12 months, shown in the blue and 
red lines respectively have also trended upward over time. Between 2000 and 2011 there were a total of 
117 conflict fatalities, climbing to almost 5,000 in 2020 and peaking at over 8,800 in 2023. The average 
number of high temperature days over the previous 12 months for all grid cells in the year 2000 was just 
under 7,  but this figure rose to an average of 14.2 high temperature days in 2012 and 42.1 in 2024.

31 United Nations High Commissioner for Refugees (UNHCR) and Potsdam Institute for Climate Impact Research (PIK). (2021). 
Climate Risk Profile: Sahel. https://www.unhcr.org/61a49df44.pdf

32 Through September 2025.

33 Due to the lack of land registration/land titles/tenure, farmers are not willing to invest in infrastructure or expanding their 
land parcels to make them more efficient. Consequently, small plots of land are over exploited, and the combined effect of 
population growth and climate change makes the competition over the shrinking available arable land areas even fiercer. 

34 Modibo Ghaly Cissé, “Understanding Fulani Perspectives on the Sahel Crisis,” Africa Center for Strategic Studies, April 22, 
2020, https://africacenter.org/spotlight/understanding-fulani-perspectives-sahel-crisis/

https://www.unhcr.org/61a49df44.pdf
https://africacenter.org/spotlight/understanding-fulani-perspectives-sahel-crisis/
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Figure 3: Number of yearly high temperature days (green), number of conflict fatalities (red), 
and displacement counts (blue) for the Liptako-Gourma region from 2000 to 2024.
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CHAPTER 2:

Slow Changes, 
Big Impacts 

2.1 Rising temperatures

35  Temperature data from the Climate Hazards Center InfraRed Temperature with Stations (CHIRTS).

Temperature data across our study region reveal a 
general warming pattern over the past two decades. 
Analysis of temperature data35 reveals a linear trend 

averaging 0.03°C per year from 2000 to 2024, 
which translates to approximately 0.3°C per decade 
of warming. This is higher than the global average 

© UNHCR/Eugene Sibomana
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rate of warming, which has been 0.15 to 0.2°C per 
decade since 1975.36 The increase in temperature is 
not uniform across the region, though. Some areas 
experienced significantly higher temperature increases 
than others depending on the geographic location and 

36 NASA. World of Change: Global Temperatures. Retrieved from https://science.nasa.gov/earth/earth-observatory/world-of-
change/global-temperatures/

37 Countries classified as East African include Burundi, Ethiopia, Eritrea, Kenya, Rwanda, Somalia, Sudan, South Sudan, United 
Republic of Tanzania, and Uganda.

38 Countries classified as Central African include Chad, Central African Republic, Cameroon, Democratic Republic of the 
Congo, and Angola.

39 Countries classified as West African include Benin, Burkina Faso, Côte d’Ivoire, Ghana, Mali, Mauritania, Niger, Nigeria, 
Senegal, and Togo.

with seasonal variations. Figure 4 plots the monthly 
average temperature against the baseline temperature 
from the years 1980 – 1990 for the same location 
and month, for countries in East37, Central38, and 
West39 Africa. In East Africa, the average difference in 

Figure 4: Average monthly temperature anomalies over East, Central, and West Africa regions over 
baseline – average monthly temperature between 1980 and 1990.

https://science.nasa.gov/earth/earth-observatory/world-of-change/global-temperatures/
https://science.nasa.gov/earth/earth-observatory/world-of-change/global-temperatures/
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temperature from the baseline among all months in 
the years 2000-2004 was +0.47°C and by 2020-2024, 
this rose to +0.88°C. These figures were +0.24°C and 
+1.00°C in Central Africa, and +0.33°C and +0.96°C 
in West Africa, respectively, for the same years. The 
three regions therefore all experienced an average rise 
in monthly temperature from the baseline averages 
when comparing earlier and later periods of the project 
timeline, with the largest increase in Central African 
countries. 

In addition to generally rising temperature trends, 
the frequency of extreme heat events has increased 
dramatically across the region over the past two 
decades. Figure 5 shows the average number of 
high temperature days,40 for each 0.1° grid cell for the 
years 2000-2002 (left) and 2022-2024 (right). As high 
temperature days are above the 99th percentile for a 
given location, stable conditions would yield 3-4 high 
temperature days annually. In the years 2000-2002, 
the annual average number of high temperature days 
was 8.47, during the 2022-2024 period, this had 
jumped to 30.63 days.

40 High temperature day defined as a day with temperature high above the 99th percentile of high temperature among all days 
from 1950-1980 for a given location. 

41 Shukla, Shraddhanand, Gregory Husak, William Turner, Frank Davenport, Chris Funk, Laura Harrison, et al. (2021). “A Slow 
Rainy Season Onset Is a Reliable Harbinger of Drought in Most Food Insecure Regions in Sub-Saharan Africa.” PLoS ONE 
16, no. 1: e0242883. https://doi.org/10.1371/journal.pone.0242883

Between 2000 and 2002, 48.6 per cent of grid cells 
saw 1-10 annual high temperature on average, 40.3 
per cent experienced 11-25 annual high temperature 
days, and 10.9 per cent experienced 0 annual high 
temperature days. The number of grid cells with 
26 or more high temperature days on average was 
negligible. Between 2022 and 2024, 51.0 per cent of 
grid cells saw 26-50 annual high temperature days 
and 12.3 per cent saw more than 50 annual high 
temperature days on average. The percentage of grid 
cells experiencing 0 high temperature days was 1.5 per 
cent. The maps and underlying statistics demonstrate 
that in recent years, large swaths of the continent 
have experienced 26 or more high temperature 
days annually. Some regions, particularly the highly 
populated areas of coastal West Africa and around 
Lake Victoria in Uganda and the United Republic of 
Tanzania,, have endured more than 50 such days.

Periods of anomalously high temperatures risk 
coinciding with critical agricultural periods, such 
as the beginning of the growing season when 
crops need stable conditions to grow,41 and when 
pastoralists traditionally move their herds to 
established grazing areas. Extreme heat during 
these sensitive periods can damage vegetation 

Figure 5: 3-year averages of the yearly number of high temperature days in study region – 
comparison of the period of 2000 to 2002 (left) and the period of 2022 to 2024 (right).

https://doi.org/10.1371/journal.pone.0242883
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and decrease water supplies through increased 
evaporation. These conditions can therefore disrupt 
agricultural and pastoral calendars that communities 
rely upon, adding additional stress on communities, 
especially those with fewer resources. 

As discussed above, rising temperatures can 
strain agricultural systems by impacting crop and 
vegetation yields, lowering the supply of available 
food and water supplies. Such vulnerabilities are of 
particular concern in Sub-Saharan Africa, which has 
the fastest population growth rate in the world. So, 
the strained supply of vegetation and water is met 
with increased demand due to a rapidly growing 
population. According to the population data,42 the 
estimated population of the region of focus was 
approximately 520 million in 2000. In 2024, the 
estimated population was around 1 billion, an almost 
doubling of the population in less than 25 years. 
The rising temperatures and increased population 

42  LandScan data of modelled annual population at 1 km resolution from 2000 – 2024.

mean that many more people are being exposed to 
temperatures that would be considered anomalous 
on a frequent basis. Figure 6 shows the estimated 
number of people experiencing 40 or more high 
temperature days in each year. In a normal situation, 
an area would only experience 1 per cent of days 
being high temperature (3 – 4 days a year). So, 40 
high temperature days represents a huge deviation 
from this norm. 

The number of people experiencing 40 or more high 
temperature days in 2000 remained relatively low 
until 2015, but exploded since 2023, reaching almost 
600 million in 2024. 

Although long-term predictions are beyond the scope 
of this project, temperature and population trends in 
the region clearly indicate an upward trajectory in the 
coming years. Figure 7 illustrates the potential impact 
of these trends on the number of people exposed 

Figure 6: Estimated number of people living in area with 40 or more high temperature days per year.
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to high temperature days per 0.5° grid cell in 2040, 
assuming a linear continuation of the trends observed 
between 2000 and 2025. The bubble sizes in Figure 
7 represent the population of each 0.5° grid cell in 
2010 (left) and the projected population in 2040 
(right) based on simple linear trends. The colours of 
the bubbles indicate the number of high temperature 
days in the respective year. In 2010, the region of 
interest had a population of 680 million people, of 
which approximately 122 million were exposed to 40 
or more high temperature days. Our simple linear 
extrapolation suggests that the region’s population 
will reach around 1.5 billion by 204043. Based on 
our analysis, 887 million of this total population 
are expected to be exposed to 40 or more high 
temperature days in that year.  

A significant number of the grid cells are expected 
to experience 60 and more high temperature days 
in 2040 , particularly in the regions of coastal West 
Africa, South Sudan, northern Somalia, and the Lake 
Victoria. According to UN population estimates, 
countries in Sub-Saharan Africa are projected to 
increase in population by 79 per cent by the mid-
2050s, reaching 2.2 billion. Three countries within the 
focus of this project, Angola, the Democratic Republic 
of the Congo, and Niger, are likely to double in size 

43 This closely match the UN Population Division medium variant prediction for the same countries of 1.48 billion in 2040 
(retrieved from: https://population.un.org/wpp/) 

44 United Nations. “Population.” United Nations – Global Issues. https://www.un.org/en/global-issues/population

between 2024 and 2054.44 This population growth 
is evident in Figure 7, where many of the bubbles 
in 2040 are larger than their 2010 counterparts, 
especially in urban and para-urban areas. It should 
be noted that the 2040 map appears to have more 
empty grids, indicating a population below zero. This 
is a result of negative population trends in these 
grid cells, which are interpreted in our simple model. 
However, as climate and population predictions are 
beyond the scope of this project, these figures should 
be understood as rough estimates of the converging 
trends of rising temperatures and populations rather 
than precise projections.

As discussed in Chapter 3, the rising temperatures 
and populations along with a myriad of other triggers 
will potentially contribute to forced displacement, 
especially from unstable areas experiencing conflict. 
The movements of large number of people will put 
further strain on the areas that they settle, such as 
urban areas and refugee camps, which may already 
be experiencing environmental and population 
stress. This additional pressure on resources 
and infrastructure in these receiving areas could 
exacerbate existing challenges and potentially lead to 
new conflicts or humanitarian crises.

Figure 7: High temperature days (coloured) and population size (bubble size) by grid cell in 2010 (left) and 
expected figures in 2040 (right).

https://population.un.org/wpp/
https://www.un.org/en/global-issues/population
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2.2 Unpredictable precipitation

45 Drought levels measured through the Standardized Precipitation Evapotranspiration Index (SPEI). Higher drought levels 
have a more negative SPEI, so we invert SPEI values for our analysis.

46 Reich, P., Numbem, S. T., Almaraz, R., & Eswaran, H. (2001). Land resource stresses and desertification in Africa. In E. 
Bridges, Responses to Land Degradation. Boca Raton: CRC Press.

In the 1980s, parts of Africa, particularly the Sahel and 
Ethiopia, experienced some of the most devastating 
droughts of the 20th century. Since then, there has 
been a recovery in seasonal rainfall amounts. But the 
recovery in rainfall quantity masks important changes 
in disruptions to the timing, intensity, and geographic 
distribution of the precipitation that many livelihoods 
depend upon. Three notable characteristics relating 
to precipitation in the region since 2000 have been 
increasing drought levels, especially in certain 
areas, increased levels of very high precipitation, 
periodically creating flood conditions, and shifts in the 
seasonal timing of vegetation peaks, which pose a 
challenge to farmers and pastoralists.  

Increasing drought
Although drought conditions have improved since 
the mid-1980s, they have increased overall since the 
early-2000s. Examining accumulated drought, which 
measures the sum of inverted drought index45 over 
the previous 72 months (6 years), Figure 8 shows the 
average accumulated drought in each grid cell in the 

periods 2000-2006 (left) and 2018-2024 (middle), 
as well as the change in drought levels between the 
2018-2024 average and the 2000-2006 average 
(right). The average accumulated drought among 
all grid cells in the period 2000-2006 was 22.81, as 
compared to 49.15 in 2018-2024, representing a more 
than doubling of average drought levels between the 
two periods. 

Some notable sub-regions that have seen an increase 
in average drought levels are the Liptako-Gourma 
region, which experienced an average increase of 
24.0; central Nigeria, which experienced an average 
increase of 35.4; northeast South Sudan with an 
increase of 52.5, and Somalia with an increase of 
76.9 average accumulated drought levels between 
the period 2000-2006 and 2018-2024. As discussed 
later in the chapter, these are also areas that have 
experienced high levels of forced displacement 
since 2000. Extended periods of drought risk 
causing desertification, which is a permanent 
transition towards desert conditions. The process of 
desertification affect about 46 per cent of Africa and 
approximately 500 million people.46

Figure 8: Accumulated number of drought months over the periods of 2000 to 2006 (left) and 2018 to 2024 (middle) 
as well as comparison between both periods (right). Drought months are defined as those with an SPEI of -1 or less.
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Communities in these persistently arid regions are 
confronted with a new reality: drought conditions 
are no longer temporary events requiring short-term 
coping strategies and have become semi-permanent 
environmental conditions requiring either a complete 
shift in livelihoods or permanent migration. Traditional 
resilience mechanisms including livestock sales, 
kinship support networks, and inter-annual resource 
buffering become ineffective in the absence of 
recovery periods.

Concentrated precipitation
As the region has experienced increasing levels of 
drought, many areas also receive annual precipitation 
matching or exceeding historical averages, but this 
rainfall is concentrated in high-intensity events. 
Precipitation that previously occurred steadily, over 
multiple days, allowing for soil infiltration and aquifer 
recharge, now occurs as intense storms delivering 
the equivalent of previous total monthly rainfall 
within hours. Figure 9 documents this intensification,  
showing the number of average heavy precipitation 
days. in the high precipitation month between the 
years 2000 and 2002 (left) and between the years 
2022 and 2024 (right). Areas that experienced a 
normal amount of heavy precipitation events in the 
earlier period now face them much more frequently. 

Some noticeable changes in the number of heavy 
precipitation days during the high precipitation 
months are Burkina Faso, which experienced an 
average of 1.78 heavy precipitation days during the 
period 2000-2002 and 2.34 days during the period 
2022-2024; the area around Lake Chad, which 
averaged 0.49 heavy precipitation days in the earlier 
period and 1.76 in the later period; and southern 
Somalia, which experienced 1.03 heavy precipitation 
days in the earlier period and 1.29 in the later period.

The increase in concentrated rainfall disrupts 
traditional agricultural practices that depend on 
predictability. For agricultural systems, the intense, 
heavy rainfall can lead to seeds being washed away 
or damaged. Pastoral systems also face flooding 
within pastures, followed by rapid desiccation.

As much of the region has experienced both 
increased drought during certain times of the year 
and extremely high precipitation during other times 
of the year, these areas with alternating extremes 
risk can experience “hydroclimatic whiplash,” a 
phenomenon characterized by an extended dry 
period that leads to soil hardening, followed by 
intense precipitation events. When rain falls on 
hardened soil, it tends to generate surface runoff 

Figure 9: Average number of heavy precipitation days during peak precipitation month in the years 2000-2002 
and 2022-2024.



Figure 10: Differences in average NDVI indices over the periods of 2018 to 2024 and of 2000 to 2006.
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rather than infiltrating the ground, which can lead 
to increased erosion, flash flooding, and reduced 
groundwater recharge.47 

Changing vegetation
Despite conditions of increased drought and extreme 
precipitation, much of the region has seen an 
increase in average annual vegetation,48 in recent 
years. Figure 10 shows the percentage change in 
NDVI in the peak NDVI months for each 0.1° grid cell 
in years 2018-2024 as compared to 2000-2006 
average levels. Overall, the average NDVI in peak 
NDVI months during the period 2018-2024 was 4.48 
per cent higher than during the 2000-2006 period. In 
the Liptako-Gourma region, which encompasses the 
border area between Mali, Niger, and Burkina Faso, 
NDVI in the 2018-2024 period was 17.42 per cent 
higher than in the 2000-2006 period. In northeast 
South Sudan, NDVI was 4.85 per cent higher in the 
later period. Conversely, central Nigeria and southern 

47 Swain, D. L., Prein, A. F., Abatzoglou, J. T., Albano, C. M., Brunner, M., Diffenbaugh, N. S., . . . Touma, D. (2025). Hydroclimate 
volatility on a warming Earth. Nat Rev Earth Environ, 6, 35-50. doi:https://doi.org/10.1038/s43017-024-00624-z

48 As measured by the Normalized Difference Vegetation Index (NDVI).

Somalia have experienced a decrease in average 
NDVI between the two periods of 4.20 per cent and 
2.54 per cent, respectively.  

Although the region has experienced an increase 
in NDVI in the peak NDVI months in recent years, 
Figure 11’s phenological analysis reveals that peak 
vegetation is now out of sync with traditional 
agricultural and pastoral calendars in certain areas. 
This increases the risk of agricultural and/or pastoral 
activities being implemented at the wrong time. For 
instance, if farmers plant a certain crop at the same 
time each year, changing precipitation patterns may 
mean that their crops will face too much or too little 
precipitation at key stages in the development of 
the vegetation process, damaging the crops and 
lowering yields. Similarly, pastoralists may travel to 
a certain area during a particular period, expecting 
there to be vegetation and water for their livestock, 
but upon arriving find that these vital resources 
are insufficient, posing a risk to their animals, and 
thereby, their livelihoods. While Figure 10 indicates 
vegetation increases in the region, phenological 
shifts documented in Figure 11 may reflect multiple 

https://doi.org/10.1038/s43017-024-00624-z
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factors beyond precipitation changes. Agricultural 
expansion, changing crop varieties, urbanization, and 
shifts from pastoral to agricultural land use could all 
alter peak vegetation timing. For instance, replacing 
natural vegetation with crops would lead to peaks 

49 United Nations Institute for Disarmament Research. (2024). Climate Change is Driving People into Armed Groups. United 
Nations Institute for Disarmament Research.

in vegetation cover aligning with cropping seasons 
rather than natural rainfall patterns. Areas showing 
dramatic changes over time may indicate land use 
conversion rather than, or in addition to, climate-
driven ecosystem changes. 

BOX 3: Lake Chad: Conflict in a changing environment

The Lake Chad region, encompassing parts of Nigeria, Chad, Niger, and Cameroon, has become a hotspot 
for violence and instability. The crisis in this area is driven by a combination of factors, including the rise of 
extremist groups such as Boko Haram and the Islamic State West Africa Province (ISWAP), ethnic tensions, 
poor resource management, and environmental changes. 

The origins of Boko Haram can be traced back to the early 2000s when it emerged as an Islamist sect in 
northeastern Nigeria. Boko Haram has drawn much of its membership from Kanuri fishermen and traders, 
many of whom lost their traditional livelihoods as Lake Chad shrank due to climate change and water 
mismanagement. Economic hardship and political marginalization made these communities particularly 
vulnerable to Boko Haram’s recruitment efforts. The group exploited local grievances, promising financial 
incentives and a sense of purpose to disillusioned youths. This is exemplified by 16 per cent of survey 
respondents in northeast Nigeria reporting that they knew someone who joined Boko Haram because of 
challenges relating to climate change.49

In 2016, Boko Haram splintered following leadership disputes, leading to the emergence of the Islamic 
State West Africa Province (ISWAP). While Boko Haram continued its brutal tactics, ISWAP sought to portray 
itself as a more strategic and governance-oriented group. ISWAP initially gained support by presenting 
itself as less indiscriminate in its violence. However, as both factions competed for control over resources, 
recruitment, and territory, they began engaging in direct conflict. Clashes between Boko Haram and ISWAP 
have further deepened the region’s insecurity.

Figure 11: Phenological shift - change in peak vegetation timing (2018-2024 vs 2000-2006).
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In Figure 12, the bar plot below shows the annual levels of cross-border displacement, while the levels of 
conflict events, medium-term temperature and heavy precipitation days are depicted in the blue, red and 
green lines respectively. The grey bars show that there was very little cross-border displacement prior to 
2013, but this increased to over 200,000 people in 2014, coinciding with the expansion of Boko Haram. 
Cross-border displacement has dropped since then but has risen slightly in recent years. Since 2000, the 
levels of conflict events, medium-term temperature and heavy precipitation have all trended upward. 

2.3 Interlinkages between 
environmental stressors  

The temperature and precipitation changes detailed 
in the two previous sections affect populations 
through various channels. Especially in regions where 
livelihoods depend heavily on rain-fed agriculture, as 
is the case in most of our study region, environmental 
stressors can trigger sequential impacts that 
subsequently contribute to displacement. 

Most rural households in the region practice 
smallholder farming and pastoralism. These systems 
have historically adapted to variable conditions, but 
the magnitude of current changes, as documented in 
Chapters 2.1 and 2.2, increasingly exceeds traditional 

coping capacities. Nearby urban populations depend 
on rural production through market chains that 
connect rural producers to urban consumers.

As explained above, rising temperatures and shifting 
precipitation patterns affect agricultural output. Crop 
yields decrease when temperatures exceed optimal 
ranges for photosynthesis and grain formation. 
Altered rainfall timing disrupts traditional planting 
and harvesting cycles which normally follow the 
rainy season. Particularly, in the early stages of the 

Figure 12: Number of conflict events (red), medium temperature (light blue), heavy precipitation (green) 
and forced displacement counts (blue bar chart) for the lake Chad region from 2000 to 2024.
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planting season, high temperatures and the lack of 
precipitation, or abnormally high precipitation, have a 
lasting impact on the plants and later yields. 

For pastoral systems, these changes are observed 
in reduced pasture quality and changes in water 
availability, as well as reduced dairy production. 
Traditional routes taken by pastoralists become less 
viable when the expected resources fail to materialize 
consistently over time and in known locations.

Reduced agricultural productivity affects food security 
in several ways. Rural households face direct shortfalls 
in their consumption when yields decline. Market 
systems experience disruptions as reduced volumes 
lead to higher transaction costs per unit and increased 
price volatility, making trade less predictable and 
profitable. As a consequence, urban consumers face 
reduced availability and higher prices for basic food 
items. When production shortfalls occur across multiple 
areas simultaneously, they can overwhelm traditional 
support mechanisms such as family assistance and 
local food sharing arrangements.

Sustained climate-induced stress can intensify 
competition for resources between different 
traditional user groups. Farmers and herders may find 
themselves competing for the same land and water 
resources as environmental conditions shift. Historical 
resource-sharing arrangements come under pressure 
when the availability of resources declines below 
critical thresholds. In areas with weak governance 
or pre-existing social divisions, such competition for 
resources can lead to escalating tensions. 

Therefore, climate risks and conflict dynamics 
reinforce one another, with flooding, drought and 
desertification contributing to competition over land 
and water, exacerbating existing livelihood stresses, 
and intensifying conflict over scarce resources. In 
turn, insecurity and the presence of non-state armed 
groups restrict safe access to farmlands, grazing 
areas and markets, limiting households’ ability to 
recover from climate shocks. In many conflict-affected 
areas, people already displaced by violence are 
repeatedly exposed to floods and heatwaves, further 
undermining their resilience and complicating efforts 
to support safe returns or local integration, often 
leading to cross-border displacement. 

2.4 Displacement trends across the region 

This report uses forced displacement data from 
UNHCR’s Population Registration and Identity 
Management Eco-System (PRIMES) database. PRIMES 
records each individual who has been registered 
as a refugee or an asylum-seeker by UNHCR after 
crossing an international border. The report therefore 
focuses on people displaced beyond their own 
country. Data limitations curtail the opportunity to 
include internally displaced people (IDPs), granular  
data is rarely available for such populations and the 
population estimates are often based on relatively 
infrequent surveys which do not allow the production 
of monthly figures at the sub-national geo-spatial 
resolution required to place individuals into specific 
grid cells by their place of origin. 

Displacement over time
Between January 2000 and September 2025, the 
region saw a number of monthly peaks in forced 
displacement levels corresponding to major events as 
depicted in Figure 13.  

The intensity of these surges has increased in more 
recent years and the geographical distribution 
of displacement has undergone a substantial 
transformation between the earlier and later years 
of the study period. Through 2010, cross-border 
displacement was relatively low. There were only a 
few outbreaks of conflict events including the crisis 
in Darfur in 2003, the civil war in Somalia in 2009, 
and the civil war in Côte d’Ivoire in 2010, which 
contributed to spikes in forced displacement. Notably, 
this decade saw lasting peace resolutions to long-
running conflicts in Angola in 2002, where a civil war 
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was fought since 1975, and in Burundi in 2005, where 
a civil war was fought since 1993. Additionally, the 
Second Ivoirian Civil War, which broke out in late-
2010, was resolved by mid-2011. Since 2011, there has 
been an escalation of conflicts across much of this 
region, which have led to large-scale surges in cross-
border displacement. In addition to the continuation 
of civil war in Somalia, civil wars broke out in Mali and 
the Central African Republic in 2012, and southwest 
Cameroon in 2016, all of which continue to the 
present. Civil wars in Ethiopia (2020 – 2022) and 
South Sudan (2014 – 2020) ended in peace deals, 
but there is still a risk of conflict flaring up again in 
these countries. Extremist groups such as Al Shabaab 

in Somalia, Jama’at Nasr al-Islam wal-Muslimin 
(JNIM) in the Sahel, and Boko Haram and ISIS in 
the Lake Chad area continue to exploit weak public 
institutions and cause conflict in the region. Finally, 
the outbreak of conflict in Sudan in 2023 and the 
rising intensity of conflict in the Democratic Republic 
of the Congo in 2025 have also led to significant 
cross-border displacement.

Figure 14 shows the intensity of displacement from 
grid cells between the earlier years of our analysis, 
2000 to 2006, and the later years, 2018 to 2024. 
There are small clusters of grid cells that experienced 
higher displacement in the earlier period than the 
later period; these include the Casamance area of 

Figure 13: Total monthly cross-border displacement from East-, Central-, and West-African countries, January 
2000 to September 2025. Figure 13 presents the stark reality of escalating cross-border forced displacement 
across East, Central, and West Africa. The figure shows a rising trend in cross-border forced displacement with 

many sudden surges, mainly triggered by the outbreak of conflict events.
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southern Senegal, southern Togo, and Angola. But 
in general, the grid cells which have experienced 
displacement are a darker colour in the 2018-2024 
map, demonstrating higher levels of displacement 
in the later period owing to the development of 
conflicts detailed above. Interestingly, areas with high 
displacement in the later period, such as Liptako-

Gourma, southwest Cameroon, Lake Chad, western 
Central African Republic, eastern South Sudan, 
Eritrea, and southern Somalia, all experienced some 
displacement in the earlier period. This suggests high 
levels of displacement often occur in areas where at 
least some displacement had previously occurred. 

2.5 Climate trends and displacement

In light of the changing climate conditions and the 
increased incidence of forced displacement in 
recent years, we examined the relationship between 
these two trends. As discussed in Chapter 1, the 
linkage between slow-onset climate change and 
displacement is indirect and complex. As this project 
focuses on a large geographical area, it would be 
impossible to find a single statistic which measures 
the uniform relationship between a climate variable 
and displacement. For instance, rising temperatures 
in one area might have no impact on livelihoods 
and the risk of people becoming displaced, but 
may have a significant impact in another areas. 
Therefore, the following sections focus on the 
localized relationship between temperature change 
and displacement and drought and displacement. 
We also observed increased seasonal variation in 
displacement in recent years, which may indicate 

increased displacement due to climate conditions at 
certain times of the year, such as displacement at the 
end of the dry season due to diminishing crop stocks 
resulting from poor yields during the growing season. 
However, these trends require further analysis to 
establish a more definitive relationship between 
climate change and displacement patterns.

Displacement and temperature
There is some spatial correspondence between 
temperature change and significant humanitarian 
crises in some areas, though this relationship is 
not universal. The circles in Figure 15 represent the 
level of displacement from the grid cells that have 
experienced any displacement outflows since 2000. 
The colour scale shows the average 2020-2024 
monthly temperatures change by grid cell against 

Figure 14: Cumulative cross-border displacement at the 0.5-degree grid level for the periods 2000 to 2006 and 
2018 to 2024 (log scale) by area of origin.
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the average temperatures during the baseline period 
of 1980-1990. The average monthly temperature 
difference from the baseline for each grid cell in 
the 2020-2024 period was +0.95°C. The border 
between Sudan and South Sudan, which appears 
prominently in the warmest zones of our temperature 
mapping, with an average temperature difference 
of +1.37°C, has been among the largest sources of 
forced displacement in our study region, producing 
2.5 million refugees since 2000. Some other areas 
of notice in terms of temperature rise and forced 
displacement are Eritrea, which has experienced 
an average temperature difference of +1.04°C 
and over 600,000 refugee outflows; and Central 
African Republic, which has experienced an average 
temperature difference of +1.13°C and almost 1 million 
refugee outflows.

Interestingly, the Liptako-Gourma region, Lake 
Chad and Darfur region in western Sudan have all 
experienced significant displacement but did not 

experience particularly high temperatures during the 
period of 2000 to 2024 as compared to the baseline. 
The average monthly temperature differences in 
these areas were +0.79°C, +0.44°C, and +0.51°C, 
respectively. These areas, which have experienced 
high levels of forced displacement, have therefore 
seen temperatures that are higher than the baseline, 
but less than the average temperature increase 
for the whole project region. This finding suggests 
that while temperature change may contribute to 
displacement, other factors such as political instability, 
conflict, and socio-economic conditions likely play 
a more direct role in driving forced displacement in 
these specific regions. 

Displacement and drought
As mentioned in Chapter 2.2, the region of study has 
experienced a general increase in drought conditions 
since 2000. Figure 16 below shows the correlation 

Figure 15: Geographical distribution of temperature anomalies and displacement across the study region 
– comparison of 2020-2024 average temperatures with baseline period (1980-1990) and cross-border 
displacement between 2000 and 2024. Only grids with at least a population of 50 people are colored.
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index of accumulated drought50 with logged monthly 
displacement for each grid cell over the period 
January 2000 to September 2025. Similar to Figure 
15 above, the bubble size represents the total 
displacement from each grid cell since 2000. 

Overall, the average correlation between 
accumulated drought and monthly logged 
displacement among the grid cells that have 
experienced some displacement is 0.12, indicating a 
weak signal. But certain clusters of grid cells show a 
high correlation between the drought measurements 
and logged displacement. For instance, grid cells 
in the Liptako-Gourma region have an average 
correlation of 0.38 between accumulated drought and 
monthly logged displacement. When weighting this 
correlation average by total displacement from the 
grid cells in Liptako-Gourma, the coefficient increases 
to 0.44, demonstrating that grid cells with higher 
displacement have generally experienced more 
severe drought conditions. Similarly, in southwest 
Cameroon, where a civil war has been ongoing 
since 2016, the correlation between accumulated 

50  Accumulated drought measures the sum of inversed drought index, SPEI, over the previous 72 months (6 years).

drought and logged monthly displacement is 0.28. 
When weighted by displacement, the coefficient rises 
to 0.55. In the Lake Chad region, grid cells have a 
correlation of 0.31 between accumulated drought and 
logged displacement, and weighting by displacement 
yields a coefficient of 0.68. These findings suggest 
that while the overall correlation between drought 
and displacement may be weak across the entire 
study area, specific regions experiencing high levels 
of displacement tend to show a stronger relationship 
between drought severity and forced displacement.  
It is important to note that some areas with high 
displacement have a negative correlation between 
drought and logged displacement. The most notable 
example is western Sudan, where the Darfur region 
has experienced waves of conflict, particularly during 
the crisis in 2003-2004 and since the civil war broke 
out in 2023. The blue grid cells in Darfur indicate a 
negative correlation between drought and logged 
displacement, with an average correlation of -0.11 
in this area. This finding suggests that the relatively 

Figure 16: Correlation coefficient of accumulated drought and logged monthly displacement by grid cell.
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favorable climate conditions in Darfur may actually 
be a source of conflict, as people compete over 
fertile lands.51 

Seasonality
Figure 17 illustrates the average monthly 
displacement from all grid cells, grouped into 
5-year periods, showing the seasonal dynamics that 
underlie cross-border displacement. Based on the 
increased intensity of displacement events since 
2010, it is unsurprising that the lines for the 5-year 
periods 2000-2004 and 2005-2009 have lower 
average monthly displacement than the lines for 
the later periods. It is interesting that not only has 
displacement increased in the recent periods, but 
that the seasonal variation of displacement has also 
increased. In the early periods, there was very little 
difference in average displacement between peak 
and low months. However, starting from the period 
2010-2014, there have been large seasonal swings 
in the average number of displaced persons. As 
discussed above, most spikes in displacement are 

51 Olsson, O., & Siba, E. (2013). Ethnic cleansing or resource struggle in Darfur? An empirical analysis. Journal of Development 
Economics, 103, 299-312. doi:https://doi.org/10.1016/j.jdeveco.2013.02.004

triggered by conflict events, which may be influenced 
by seasonal factors. It is possible that these conflict 
events are partially driven by increased competition 
for resources due to the impacts of climate change, 
which can be amplified at certain times of the year. 
For instance, reduced crop yields resulting from 
rising temperatures, drought conditions, and/or 
erratic precipitation can lower food stocks and trigger 
tensions or conflicts, particularly during the late 
dry season when food scarcity is at its peak. Such 
dynamics may increase the likelihood of displacement 
during specific periods of the year, leading to 
seasonally concentrated displacement patterns. 
Further investigation into the growing seasonality of 
displacement trends could provide greater insight into 
the complex relationship between climate change and 
forced displacement, making it an area that warrants 
additional research.

Figure 17: Seasonality patterns in mean displacement over five-year increments.

https://doi.org/10.1016/j.jdeveco.2013.02.004
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CHAPTER 3:  
Understanding 
the patterns 
This chapter presents the methodological framework 
underpinning the CLIFDEW-GRID displacement 
prediction model. Acknowledging the complex 
relationship between climate change and forced 
displacement, we have developed a systematic 
approach to capture these interactions through 
intermediate modelling steps. These steps involve 
predicting specific feature variables that contribute 
to estimating the risk of forced displacement from 
individual grid cells. By breaking down the modelling 

process into smaller, interconnected components, 
the CLIFDEW-GRID model aims to provide a more 
nuanced understanding of the various factors that 
influence displacement patterns in the context of a 
changing climate.

Although previous sections focused on potential 
interplay between climate change and displacement, 
we avoid drawing direct causal links between climate 
conditions and forced displacement. Instead, our 
approach recognizes that slow-onset climate events 

© UNHCR/Eugene Sibomana
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potentially contribute to displacement through 
indirect pathways, interacting with social, economic, 
and political factors. For instance, climate stress 
affects agricultural yields and pastoral systems, 
which impacts food security, which in turn increases 
population vulnerability. This vulnerability, when 
combined with pre-existing tensions along ethnic 
lines or other grievances, can escalate into conflict 
and ultimately forced displacement. 

To model this indirect linkage, we require data to 
serve as indicators at each stage. Climate data, such 
as historical temperature, precipitation, drought, 
and vegetation index measurements, are readily 
accessible. These datasets provide essential 
information on the changing environmental conditions 
that may influence factors like resource availability 
and agricultural productivity. In addition to climate 
data, we utilize geo-coded point locations of conflict 
events from the Armed Conflict Location & Event 
Data Project (ACLED). This dataset offers valuable 
insights into the spatial distribution and intensity of 
conflicts, which can be a significant driver of forced 
displacement. By combining climate and conflict 
data, we can better understand the complex interplay 
between environmental factors, resource scarcity, 
and political instability, and how these elements 

contribute to displacement risk. The integration of 
these diverse datasets enables the CLIFDEW-GRID 
model to capture the multi-faceted nature of the 
climate-displacement relationship and provides more 
accurate predictions of forced displacement patterns.

However, there were no readily useable data for 
certain steps in our theoretical structure. Levels of 
forced displacement from a specific location are 
influenced by the population present in that location. 
As historical population data are only available 
annually, we developed a model to predict the 
monthly population in each grid cell. As an indicator 
of livelihoods, we chose food security as a key 
variable. Although historical data on food security is 
available through sources such as the Famine Early 
Warning Systems Network (FEWS NET), these data 
do not cover our entire region and do not extend far 
enough back in time for the timeline on which we train 
our models. To address this limitation, we developed 
a model to predict the food security classification 
for each location, starting from the initial point of our 
model training. Finally, the raw cross-border refugee 
data used for this project were not allocated to the 
desired grid cells. Therefore, we developed a model 
to assign the refugee observations to the appropriate 
grid cells. By creating these intermediate models, we 

Figure 18. Overview of intermediate models and how they feed into the final model.

Population density model

monthly population
 estimates

monthly food 
security index

gridded 
displacement data

Food security model

Final model

Displacement gridding 
model



32

were able to fill critical data gaps and ensure that the 
CLIFDEW-GRID model has access to the necessary 
inputs to accurately predict forced displacement 
patterns in response to climate change and other 
relevant factors. In summary, to capture these 
complex pathways, we developed three intermediate 
models that provide monthly inputs to our final 
displacement prediction model:

•	 Population Density Model: This model 
predicts the monthly population in each grid 
cell, addressing the limitation of historical 
population data being available only annually. 
By estimating population at a higher temporal 
resolution, we can better account for the 
influence of population dynamics on forced 
displacement levels.

•	 Food Security Model: To incorporate livelihoods 
as a key factor in displacement risk, this model 
predicts the food security classification for each 
location. It extends the historical food security 
data from sources like FEWS NET, enabling us 
to cover our entire region of interest and the full 
timeline required for training our displacement 
prediction model.

•	 Displacement Gridding Model: As the raw 
cross-border refugee data were not initially 
allocated to the desired grid cells, this model 
assigns refugee observations to the appropriate 
grid cells. This intermediate model ensures that 
the displacement data is spatially aligned with 
the other input variables, facilitating the accurate 
prediction of forced displacement patterns. 
These intermediate models play a crucial role 

53  See list of variables in annex/website

in the CLIFDEW-GRID framework by filling 
data gaps, increasing the temporal and spatial 
resolution of key variables, and ensuring the 
consistency and compatibility of the input data. 

The population density, food security, and gridded 
cross-border displacement variables produced 
through the intermediate models, along with 
additional variables measuring climate, geography, 
demographics, wellbeing, governance, and conflict53 
are used as inputs to the model that predicts cross-
border displacement from the 0.5° grid cells. The 
model generates predictions for 1, 3, and 6 months 
into the future, providing valuable information for 
early warning and preparedness efforts. 	

To address the challenge of covering such a wide 
area with diverse dynamics, ranging from regions 
experiencing minimal displacement to those facing 
highly complex interactions between slow-onset 
climate change, conflict, and economic shocks, we 
employ an ensemble modeling approach. Using 
granular 0.5° grid-level data allows the ensemble to 
identify fine-scale dynamics that analysis with country-
level or regional data might overlook.

The ensemble incorporates several models, 
including tree-based methods, which are able to 
capture non-linear relationships and deep neural 
networks, designed for complex spatiotemporal 
dependencies. By combining these methods, we 
leverage the strengths of each. The simpler models 
provide insights into common patterns, while deep 
learning architectures identify more intricate localized 
dynamics. 

3.1 Population model

Overview
Predicting forced displacement outflows from a 
geographical area requires knowing the number of 
people exposed to conditions that lead to forced 
displacement. While modelled population estimates 

at very high resolution (100 - 1000 meters) are freely 
available through sources such as WorldPop and 
LandScan, these data only estimate the annual 
population at these geographical points. As this 
project is making monthly predictions, monthly 
population estimates are required for each of the 
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grid cells. Research has shown the viability of using 
nighttime lights to predict population changes.54 55 
Therefore, we use monthly nightlight radiance data to 
enhance our estimations of monthly population trends 
between known annual population figures. 

Data
Annual population data

The population data used for this project are 
LandScan modelled population count data, which has 
a resolution of 1000 meters, and are available from 
2000 to 2024. 

Nightlight data

The nightlight data used for this model are satellite 
data from two sources, the Defense Meteorological 
Satellite Program (DMSP) – Operational Linescan 
System (OLS) Nighttime Lights Time Series56 and 
the Visible Infrared Imaging Radiometer Suite 
(VIIRS), specifically VIIRS/NPP Gap-Filled Lunar 
BRDF-Adjusted Nighttime Lights Daily L3 Global 

54 Archila Bustos MF, Hall O, Andersson M. Nighttime lights and population changes in Europe 1992-2012. Ambio. 2015 
Nov;44(7):653-65. doi: 10.1007/s13280-015-0646-8. Epub 2015 Mar 14. PMID: 25773533; PMCID: PMC4591227.

55 Nawaj Sarif and Archana K. Roy, “Measuring Urban Shrinkage in India Using Night-Light Data from DMSP-OLS and VIIRS-
NPP Satellite Sensors,” Cities 152 (2024): 105176, https://doi.org/10.1016/j.cities.2024.105176

56 Image and data processing by Earth Observation Group, Payne Institute for Public Policy, Colorado School of Mines. DMSP 
data collected by US Air Force Weather Agency.

57 C. D. Elvidge, M. Zhizhin, T. Ghosh, F-C. Hsu, “Annual time series of global VIIRS nighttime lights derived from monthly 
averages: 2012 to 2019”, Remote Sensing, 2021, 13(5), 922.

500m Linear.57 The DMSP – OLS Nighttime Lights 
offers monthly data at a resolution 30 arc seconds 
(approximately 1000 meters) from a series of different 
satellites from 1992 through 2014. This project uses 
data from the F18 satellite for the years 2010 – 2013. 
Monthly data were extracted from VIIRS at native 
resolution of 500 meters for nightlight data from 2014 
to near present. 

Processes
First, the point locations of the population and 
nightlight data, are placed within the grids defined by 
the project. The annual population figures from points 
within each grid cell are then summed to find the total 
annual population within each individual 0.1° grid cell 
for 2000 to 2024. The monthly nightlight data from 
points within each grid cell are averaged to find the 
aggregate monthly nightlight for each grid cell from 
2000 to near present. This gives each of the grid cells 
annual population values from 2000 to 2024 and 
monthly values of nightlight radiance from January 
2000 to near present. 

Figure 19: Gridding LandScan population figures in year 2020 (left), gridded VIIRS nightlight radiance in May 
2020 (right).

https://doi.org/10.1016/j.cities.2024.105176
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The gridded LandScan population data have two 
issues; firstly, they only offer population estimates 
up to 2024, and secondly, there are no monthly 
indicators to build the estimates on. To estimate the 
data beyond 2024, recent trends in the population 
figure of each grid cell are projected forwards. Each 
grid cell uses the most recent years of data to fit a 
linear trend for each cell calculating a best-fit line to 
predict the population in each cell for 2025. 

The LandScan annual population value for each 
grid cell is then assigned to December of the 
corresponding year, on the assumption that 
the annual estimate represents the end-of-year 
population. A smoothing technique was then applied 
to interpolate monthly population values between 
these December anchor points. This smoothing 
produces monthly estimates for each grid cell that 
follow gradual trends and avoid abrupt jumps in 
the rate of population change from one December 
to the next.

Once we have the smoothed population data, which 
gives the monthly population predictions for each 
grid cell, we calculated the average population and 
nightlight radiance for each grid cell in each year. 
After calculating each grid cell’s annual average 
nightlight and the average of the smoothed monthly 
population predictions, the deviation for each monthly 
nightlight radiance value from the annual mean was 
calculated by dividing each monthly nightlight value 
by the mean nightlight radiance for that year (1). 
Similarly, the deviation for each monthly population 
value from the annual mean was calculated by 
dividing each monthly smoothed population value by 
the mean of the population values for that year (2). 
These deviation ratios showed how much brighter 
and more populated a given month is relative to that 
year’s average level for the grid cell. 

(1)

(2)

Next, for each monthly record, the difference is found 
between the nightlight deviation from the population 
deviation (3).

(3)

The difference in deviation measures how much 
the monthly nightlight signal changed relative to its 
annual mean compared to how much the smoothed 
monthly population changed relative to the annual 
population mean, for the same month.

The population difference was then calculated, 
which is the difference between the smoothed 
monthly population value and the average population 

value for that year (4). Multiplying the difference in 
deviation and the population difference (5) produced 
a correction term, which indicates how much the 
smoothed population should be adjusted based on 
nightlight signals. Finally, this correction was added 
to the smoothed population (6) to yield a predicted 
population value that reflects monthly changes  
informed by relative nightlight changes. 

(4)

(5)

(6)
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3.2 Food security model

58 IPC classifications, or phases, in order of severity: 1, minimal/ generally food secure; 2, stressed/ borderline food insecure; 3, 
crisis/ acute food and livelihood crisis; 4, emergency; 5, catastrophe/ famine.

Overview
Adverse climate conditions can contribute to 
situations of food insecurity along with other factors, 
such as poor governance, food prices and conflict. 
If the food insecurity situation does not improve, it 
can be a factor in people’s decision to leave their 
homes. Food security can therefore indicate which 
people have been affected by adverse climate 
conditions caused by slow-onset climate change 
and those that may then subsequently be forced to 
flee. By using food security as a proxy for estimates 
of climate conditions, the power of climate variables 
in predicting forced displacement is improved as 
they would otherwise be less significant than other 
variables such as conflict and state fragility if they 
were used directly as feature variables in a model 
predicting forced displacement. Regularly updated 
food security data are available from sources such 
as the Famine Early Warning Systems Network 
(FEWS NET) for larger geographical zones from 
2011 onwards in 3–4-months intervals. To improve 
the granularity of the data and make it useable as a 

variable for predicting force displacement, a model 
was developed to predict the food security situation 
in each of the 0.1° grid cells on a monthly basis from 
January 2009 to near present. 

Data
Food security data

Through its analysis of current situations and 
predictions of future food security situations, FEWS 
NET offers historical food security data every 3 or 4 
months from 2011 to the near present for certain sub-
national areas, with predictions up to 6 months ahead. 
The FEWS NET data are compliant with the Integrated 
Food Security Phase Classification (IPC) system of 
classifying the food security situation within an area. 
The classifications rank from 1 (minimal risk) to 5 
(famine). These data are available for all areas within 
the focus countries except for Senegal, Côte d’Ivoire, 
Ghana, Togo, Benin, United Republic of Tanzania, 
and Eritrea. Figure 20 below shows the geographical 
distribution of food security classes in July 2024.58

Figure 20: FEWS NET classifications for July 2024 within the project region.
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Climate data

Appropriate climatic conditions are necessary for the 
development of crops and vegetation for pastoralism. 
Less appropriate climate conditions, such as those 
induced through climate change, can compromise the 
growth of crops and pastoral vegetation, which may 
lead to food insecurity among the local population. 
We therefore use several climate variables to 
develop a predictive model for the IPC food security 
classification of each grid cell in each month.59 

Conflict data

To account for the potential link between armed 
conflict and food insecurity,60 certain conflict variables 
were used, based on ACLED data as feature variables 
in this model predicting food security.61 

Land use classification

Variables on the proportion of each grid cell’s area 
which is of the different land-use classification 
based on Copernicus data. These variables are the 
proportion of each grid cell which are: bare area, 
cover flooded, cropland, grassland, shrubland, tree 
cover, urban, and water. 

State fragility

To account for the fact that food insecurity may be 
a function of public mismanagement, instability, and 
even coordinated state repression, the fragility index 
from the Fragile States Index was included as a 
variable in predicting food security. 

59 Climate variables include: mean temperature difference, mean temperature difference over previous 12 months, low killing 
days, medium killing days, medium killing day difference over previous 12 months, medium term temperature difference, 
heatwave, heatwave current, mean precipitation difference over previous 12 months, heavy precipitation current, heavy 
precipitation accumulated, drought current, drought accumulated, heavy precipitation days in the last precipitation peak 
month, precipitation in the last precipitation peak month, precipitation in the month, as well as, 2, 3, 4 and 5 months 
preceding the last precipitation peak month, precipitation in the month three months preceding the last precipitation peak 
month, precipitation in the month four months preceding the last precipitation peak month, precipitation in the month five 
months preceding the last precipitation peak month, high temperature days in the last NDVI peak month, high temperature 
days in the month proceding the last NDVI peak month, high temperature days in the month two months preceding the 
last NDVI peak month, high temperature days in the month three months preceding the last NDVI peak month, high 
temperature days in the month four months preceding the last NDVI peak month, high temperature days in the month five 
months preceding, as well as, 2, 3, 4 and 5 months preceding the last NDVI peak month. 

60 Cohen, M. J., & Pinstrup-Andersen, P. (1999). Food Security and Conflict. Food, Nature and Culture, 66(1), 375-416.

61 Conflict variables include: number of conflict events, number of conflict events in 50 km radius, number of conflict events 
involving a rebel group in 50 km radius, number of conflict events featuring state force against civilians in 50 km radius, 
number of conflict fatalities within 50 km radius, level of social tension.

62	 IPC Famine Fact Sheet. (2025). Retrieved from Integrated Food Security Phase Classification: https://www.ipcinfo.org/
famine-facts/

Child health

Food security classifications as classified by the 
IPC focus particular attention on child health and 
malnutrition.62 In order to account for this, variables 
for infant mortality rate and prevalence of malnutrition 
are included in the model. Infant mortality rate counts 
the number of children per 10,000 which die before 
reaching their first birthday. Prevalence of malnutrition 
is the percentage of children under 5 that are 
malnourished. Both of these variables are extracted 
from the PRIO dataset, which offers data at the 0.5° 
grid cell level. 

Processes
Because detailed food security data are only 
available from 2011 onward, a method was needed to 
estimate conditions for earlier years. A backcasting 
model was developed for this purpose. Instead of 
predicting the future, this model works backward to 
fill in earlier months. To prepare the data, the time 
order was reversed so that the most recent month 
came first, and earlier months followed. This reversal 
allowed a forecasting approach to be used in reverse, 
effectively estimating past conditions. 

The data were then split into two sets:

•	 Training set – February 2014 to January 2024, 
used for the model to learn patterns.

https://www.ipcinfo.org/famine-facts/
https://www.ipcinfo.org/famine-facts/
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•	 Test set – January 2011 to January 2014, used to 
check the model’s accuracy.

Figure 21 shows the distribution of food security 
classes among the observations in the training and 
testing datasets used for developing the model. 
The plots show that there is an imbalance, with 
more instances having a classification of 1 (minimal/ 
no food security risk) and relatively few instances 
of classifications of 4 (emergency/ catastrophe/ 
famine). IPC classifies food security situations into 
5 categories. But as the threshold for an area to be 
classified as experiencing famine, IPC classification of 
5, is very high, we group categories 4 and 5 together. 
Both represent situations of extreme food insecurity. 

To classify food security levels for earlier periods, a 
LightGBM machine-learning model was applied. This 
approach is well suited to identifying patterns and 
assigning each area to one of several food security 
categories. LightGBM is particularly effective because 
it can handle large, complex datasets, manage 
uneven data, and capture complex relationships 
between the feature variables used to predict our 
target variable, food security classification in this case, 
and the feature variable and target variable itself.

Results
The overall accuracy of the model in predicting values 
on the testing dataset was 0.94. By food security 
class, the model has an accuracy of 0.97 at predicting 
category 1 (minimal risk), an accuracy of 0.90 at 
predicting category 2 (stressed), 0.95 at predicting 
category 3 (emergency), and 0.86 at predicting 
category 4 (combined with category 5) (emergency/ 
famine/ catastrophe).

The model also allows us to see the features which 
have the most overall importance in predicting the 
food security classifications. The LightGBM algorithm 
is a tree-based ensemble method, so feature 
importance is calculated based on how often and 
how effectively a feature is used to split data across 
all trees in the ensemble—features that lead to larger 
reductions in loss (or higher information gain) are 
considered more important. 

The feature importance analysis presented in figure 
22 provides valuable insights into the key factors 
influencing food security in the study region. The 
findings highlight the complex interplay between 
socio-economic, environmental, and temporal factors 
in determining the vulnerability of populations to 
food insecurity. The high importance of the fragility 
index suggests that areas with weak governance, 
social instability, and limited institutional capacity are 

Figure 21: Distribution of food security classifications for training set (left) and test set (right)
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more susceptible to food insecurity. This underscores 
the need for targeted interventions and support in 
fragile contexts to build resilience and improve food 
security outcomes.

The strong influence of the previous month’s 
food security classification on the current month’s 
prediction is consistent with the persistent nature of 
food insecurity. This temporal dependency indicates 
that food insecurity tends to be a chronic issue rather 
than a transient one, requiring sustained efforts to 
address the underlying drivers and break the cycle 
of vulnerability.

The significance of the time since the primary 
precipitation peak month highlights the crucial role 
of seasonal climate patterns in shaping food security. 
As the months progress further away from the peak 
rainfall and vegetation growth period, food supplies 
may become increasingly strained, leading to a higher 

risk of food insecurity. This finding emphasizes the 
importance of climate-sensitive agricultural practices, 
such as improved water management and drought-
resistant crops, to mitigate the impact of seasonal 
variability on food security.

These models produce two critical outputs: predicted 
population and predicted food security, each mapped 
to small grid cells and updated every month. This 
fine level of detail makes it possible to detect local 
changes and short-term trends that might otherwise 
be hidden. The integration of the population and food 
security models into the overall forced displacement 
prediction framework is a crucial step in capturing 
the complex pathways through which climate 
change and other factors influence displacement 
risk. By providing high-resolution, monthly estimates 
of population and food security conditions, these 
models enable a more granular and dynamic analysis 
of the drivers of forced displacement.

Figure 22: Importance of top 15 features
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3.3 Displacement Gridding Model

63  Google Research. (2022). Open Buildings. Retrieved from https://sites.research.google/open-buildings/

64  Humanitarian OpenStreetMap Team. (2022). OpenStreetMap Populated Places. Retrieved from https://www.hotosm.org/

Overview
The objective of this final intermediate model was 
to place the observations from the PRIMES dataset 
into 0.5° grid cells within our region of interest. 
Only a third of UNHCR registration records contain 
data disaggregated by origin at the administrative 
3 level or higher, which prevents undertaking a 
comprehensive analysis needed to understand 
more localized displacement trends. To estimate 
the geographical location of refugee outflows at a 
more granular level, we utilize a semi-supervised 
learning approach that disaggregates country and 
regional refugee counts by 0.5° grid cell resolution. 
The approach integrates data from UNHCR’s PRIMES 
database with satellite-derived information from 
Google Open Buildings63 and location coordinates 
from OpenStreetMap Populated Places.64

Data
Displacement data

UNHCR’s PRIMES registry represents this study’s 
primary source of cross-border displacement 
information. Developed in 2002 as a comprehensive 
case management tool, PRIMES is a centralized 
repository containing information on approximately 
18 million registered refugees and asylum-seekers 
across more than 130 countries. Each registry 
entry contains detailed individual-level data, 
including asylum country, arrival date, demographic 
characteristics (age, gender, ethnic group), and, 
critically, hierarchical place of origin information 
spanning administrative levels from the country 
(admin0) to country/town/village (admin3).

Building data

Building footprint data from Google Open Buildings 
provides information on settlement patterns that 
inform the spatial disaggregation process. This 

dataset delivers building footprint information derived 
from high-resolution satellite imagery processed 
through deep learning models. Our methodology 
utilizes the centroid point location of each building 
footprint to assign structures to corresponding 
0.5° grid cells and to administrative districts. This 
assignment process enables the approximation of 
population distribution patterns within administrative 
units and overlapping 0.5° grid cells, thereby creating 
the weighting surface necessary for disaggregating 
refugee counts from the administrative level to the 
grid cell resolution.

Location data

OpenStreetMap Populated Places data complements 
the building footprint information by providing specific 
geographic coordinates for named settlements. 
This dataset offers precise point locations for 
towns, villages, and cities across the study region. 
These settlement coordinates serve as spatial 
anchors for admin3-level place names appearing 
in the PRIMES registry. Through a spatial joining 
process, we use these data to match available 
admin3 entries from refugee records in PRIMES with 
corresponding settlement locations, thereby placing 
these observations within 0.5° grid cells even when 
higher-level administrative boundaries span multiple 
grid cells.

Processes
To estimate refugee counts at a fine spatial scale, we 
first use building footprint data from Google Open 
Buildings as a proxy for population distribution. Each 
building footprint is assigned to both an administrative 
district (admin level 2) and a 0.5° grid cell based on its 
geographic coordinates. This dual assignment allows 
us to see how buildings, and therefore people, are 
spread across both administrative boundaries and 
grid cells. We then group buildings by each unique 

https://sites.research.google/open-buildings/
https://www.hotosm.org/
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admin level 2–grid cell combination and calculate 
what share of an admin level 2’s buildings fall into 
each cell. These percentages become weights for 
redistributing refugee counts from administrative 
areas to grid cells.

In parallel, we clean and validate refugee records 
from the PRIMES database to ensure accurate 
location information. We keep only records with 
at least admin 2-level origin data and match their 
names to official boundaries, correcting spelling and 
naming differences with fuzzy matching (Levenshtein 
similarity ≥70 per cent). Records that still don’t match 
are checked against OpenStreetMap populated place 
names to assign coordinates and administrative units. 
Where all buildings in an admin level 2 area fall within 
one grid cell, refugees are directly assigned to that 
grid cell. Otherwise, the proportional weights from 
the building data guide their distribution. This process 
yields two datasets: one where refugee locations 
are assigned with certainty, and another where 
locations are proportionally modelled across multiple 
grid cells. A semi-supervised learning process 
then assigns refugee records to 0.5° grid cells 
within each administrative area (level 2). For every 

admin level 2 area, we first identify the grid cells it 
overlaps and calculate how many buildings fall in 
each, representing the likely population distribution. 
Refugee records are split into two groups: labelled 
(with known grid cells) and unlabelled (without). 
Labelled records are then combined with the 
unlabelled data for modelling.

Using a label-spreading algorithm, known locations 
from the training set guide the assignment of 
unknown ones. The model spreads location labels 
across similar records, using building distributions 
and other variables in the PRIMES data to refine 
predictions. Over repeated iterations, grid-cell 
assignments stabilize, balancing known data with 
building-based probabilities. 

Figure 23 shows the total amount of displacement by 
grid cell among all of the grid cells within the project 
region of focus. Of the 6,225 grid cells, 1,777 (28.5 per 
cent) have actually experienced any displacement. 
This is unsurprising as many grid cells lie within 
unpopulated areas of the Sahara Desert and Congo 
Basin Rainforests. But some grid cells, such as those 
in the Darfur region of Sudan, eastern Democratic 

Figure 23: Total level of displacement by grid cell



Figure 24: Density plot of gridding model accuracy: admin level 2 areas 
subject to modelling in green, all admin level 2 areas in blue
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Republic of the Congo and Burundi, Lake Chad, 
southern Somalia, Burkina Faso, and Eritrea have 
experienced significant displacement. 

Results
Table 1 demonstrates that our approach achieves 
strong predictive performance across multiple 
statistical metrics, demonstrating the ability of 
the cleaning and modelling processes to place 

observations into grid cells. Figure 24 illustrates 
the distribution of accuracy across all admin level 2 
units in the sample. While accuracy varies among 
admin level 2 units, the majority achieve high levels 
of predictive accuracy. Moreover, when the model is 
combined with deterministically placed observations, 
overall performance improves substantially across 
all evaluation metrics. This gain highlights the 
complementary roles of the deterministic and semi-
supervised components of the methodology.

Metric Semi-supervised Modelling Only Combined (Modelled + Deterministic)

Accuracy 0.845 0.929

F1 Score 0.837 0.925

Precision 0.842 0.928

Recall 0.845 0.929

Table 1: Performance results of gridding model
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3.4 Predicting displacement 
Humanitarian organizations face an increasingly 
complex challenge: how to prepare and respond 
to situations of forced displacement before they 
escalate into crises, amid progressively dwindling 
resources. Traditionally, responses have been largely 
reactive, with resources mobilized and allocated 
once a crisis has already escalated. This approach 
often results in higher costs and missed opportunities 
to prevent or mitigate worse impacts. To address 
this issue, humanitarian organizations need reliable 
tools to anticipate, plan, and prepare for forced 
displacement events. 

To give countries a tool for anticipatory action, we 
have developed a predictive model which allows us 
to understand localized risks of forced displacement 
up to six months in advance. This model is not 
intended to work in isolation or to replace human 
judgement and expertise. It is meant to serve as 
a decision-support tool that can complement the 
expertise of field staff and regional institutions. By 
specifying areas of high potential displacement up to 
six months ahead, the model aims to give additional 
information and time to organize resources and plan 
interventions to respond effectively.

However, forced displacement is inherently difficult 
to predict. The same situations and escalations may 
lead to forced displacement in one area and little to 
no movement in another. Human decision-making 
is not only shaped by immediate risk but also by 
cultural ties, social networks, and access to support 
which is difficult to capture in quantitative datasets. 
Furthermore, the complex interactions between 
different factors such as environmental degradation 

and conflict can differ from region to region and 
are therefore hard to measure in a single model, no 
matter how sophisticated. There is also the challenge 
of data limitations. Datasets may be incomplete, 
biased, or inconsistent across different regions. 
Situations can change very rapidly which might not be 
reflected in every dataset, leading to additional gaps 
and uncertainty. 

Data and method
The model draws on more than 180 different 
variables, capturing different aspects of the 
environment, economic conditions, and conflict. 
Climate data includes measures of precipitation, 
temperature anomalies and changes, drought indices, 
and vegetation health. Geographic variables include 
market access, and proximity to borders, which can 
influence the scale of refugee movements. Conflict 
data contains information on the type, severity, 
and frequency of conflict events, including the 
associated fatalities. In addition, we also incorporate 
the variables from the food security and population 
density models, which are described in Chapters 
3.1 and 3.2. We use the predicted food security 
classification resulting from the food security model, 
which predicts the food security classification in each 
0.1° grid cell from January 2009 to the present and we 
include the predicted population from the population 
density model which obtains gridded predicted 
population data through annual population figures 
and monthly nightlight radiance. The main dataset 
variable categories used and respective sources are 
presented in Table 2.

Variable name Unit Source

Dependent variable

Displacement Monthly, 0.50° grid cell UNHCR’s PRIMES Database

Climate variables

Temperature Daily, 0.05° 
Daily, 0.10°
Monthly, 0.25°

CHIRTS
Copernicus ERA-5
Berkeley Earth
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Variable name Unit Source

Precipitation Daily, 0.05° 
Daily, 0.10°

CHIRPS
Copernicus ERA-5

Normalized Difference Vegetation Index Monthly, 0.05° NASA

Standardized Precipitation 
Evapotranspiration Index

Monthly, 1.00° SPEI Global Drought Monitor

Resource and geographic variables

Landcover Constant, 0.05° Copernicus

Agro-ecological zone Constant, defined regions International Food Policy 
Research Institute

Elevation Constant, 0.10° HarvestChoice CELL5M

River Constant, defined regions Natural Earth

Road Constant, defined regions Humanitarian OpenStreetMap

Market access Constant, 0.10° International Food Policy 
Research Institute

Subsistence Index Constant, 0.10° International Food Policy 
Research Institute,
Harvard Dataverse

Demographic variables

Population density Monthly, 0.10° LandScan, DMSP, VIIRS

Ethnicity Constant, 0.10° ETH Zurich

Food security

Predicted food security Monthly, 0.10° FEWS NET

Socio-economic and wellbeing variables

Child health Constant, 0.50° PRIO

Gini Constant, 0.10° WorldPop, VIIRS

Political variables

Fragility Annual, national Fragile States Index

Conflict variables

Conflict Daily, geo-point locations ACLED

Table 2: Key variable categories used
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The model predicts the risk and scale of forced 
displacement from each grid cell at one, three, and six 
months into the future. To simplify the interpretation 

65  Brown, D. W. (2023). A Unified Theory of Diversity in Ensemble Learning. Journal of Machine Learning Research 24 , 1-49.

of risk for humanitarian workers, we implement a 
three-category classification scheme that aligns with 
operational humanitarian response frameworks:

•	 Small-scale movements (0-10 persons): 
Captures background displacement and minor population movements

•	 Medium-scale events (11-500 persons):  
Represents significant displacement events requiring humanitarian attention

•	 Large-scale crises (>500 persons): 
Identifies major displacement emergencies demanding immediate large-scale response 

We use a combination of different models to leverage 
their individual strengths and predict the risk of each 
displacement level. Our framework includes a tree-
based method as well as several neural networks with 
different architectures. Each model is designed to 
capture different aspects of displacement patterns at 
local and subregional levels. 

The tree-based method we have selected is effective 
at modelling non-linear temporal relationships and 
identifying subtle patterns in complex data. It has 
been selected for its computational efficiency and 
low memory usage which is particularly important 
given the scale of our dataset. One of its strengths 
is also its built-in ability to automatically identify the 
most relevant variables and filter out less useful 
information, allowing us to input all 180 feature 
variables and not worry about collinearity and/or 
multilinearity negatively impacting model results. 
In practice, this makes it a reliable method that 
performs especially well when predicting the most 
common forced displacement outcomes which 
are the small-and medium-scale movements. 

Alongside this method, we have developed three 
neural network architectures, each designed to 
capture both spatial and temporal patterns in the 
data. These models analyze how conditions in 
specific areas change over time and influence 
neighbouring areas, revealing complex patterns that 
span across space and time. 

The first neural networks, also known as a 
convolutional neural network (CNN), uses different 
layers which are able to detect short-term changes as 
well as longer-term patterns while focusing on local 
neighbourhoods within regions. 

The other two neural networks are convolutional 
long short-term memory models (ConvLSTM), which 
combine the two strengths of the CNN with a memory 
mechanism that allows them to decide which past 
information is important to remember and which 
one to discard, basically only remembering the most 
relevant information. This makes them well suited to 
track displacement risks that build gradually over time 
while also capturing sudden events that matter.

The most advanced network of the two is designed 
to look at patterns on two levels. At the first level, 
it captures local changes such as sudden changes 
within a subregion. At the second level, it identifies 
larger patterns across larger regions. By combining 
these perspectives into one prediction, the model can 
account for both more granular detail and the broader 
picture which can lead to more reliable predictions. 

For the last model we develop an Ensemble 
model that combines the individual predictions of 
these models into a single forecast. This is done 
by evaluating the performance of each individual 
model on the test dataset and assigns weights to 
their contribution based on their relative accuracy. 
Ensemble modelling is a well-established method 
which allows us to take advantage of each model’s 
strengths.65 This is particularly important given the 
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nature of our dataset which ranges from areas with no 
or minimal displacement to areas experiencing highly 
volatile and complex displacement dynamics. 

Finally, all models are evaluated and tested 
separately to compare their performance and to 
identify the best model for each displacement class 
and forecast horizon.66 It is important to note that 
there is no single model that performs best across 
all scales and horizons. For example, the tree-based 
model performs particularly well across all horizons 
for areas with low or occasional displacement, where 
relationships are more stable and less complex. In 
contrast, the Ensemble model is better at capturing 
higher levels of displacement over all horizons, while 
the neural networks are good at capturing escalations 
from medium to higher levels of displacements. 
This suggests that when large-scale displacement 
occurs, more complex interactions are happening 
and the model’s ability to model these becomes more 
important. The inclusion of neural network models in 
the ensemble model greatly improves its accuracy by 
enabling it to capture such non-linear relationships 
and escalations. Based on these results, the final 
model was selected as the tree-based model for low 

66  Further details of the modelling methodology are provided in Clifdew’s second technical report. 

and medium displacement while the Ensemble model 
was selected for the higher displacement class as 
its ability to integrate various modelling approaches 
allows it to better capture different interactions. 
By combining the tree-based method with neural 
networks of increasing complexity, our framework 
balances efficiency with predictive power.

To ensure that forecasts remain accurate and 
reliable, models are re-trained every three months, 
incorporating the latest data and trends. This regular 
updating allows the system to adapt to changing 
conditions on the ground and maintain its usefulness 
in humanitarian planning. 

What forecasts show
Forecasts generated for February 2025 are displayed 
on a map in Figure 20 as an example, with each grid 
coloured according to the relative displacement 
risk. This visualization allows humanitarian teams to 
quickly identify areas where displacement is expected 
to be higher, providing an intuitive overview of 
potential hotspots. The forecasts are also integrated 

Figure 25: Most likely displacement levels for 6 months ahead for February 2025, made in August 2024.
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into an internal dashboard, developed in consultation 
with regional teams to ensure clarity and usability for 
operational planning. 

For example, the predictions for February 2025, 
generated in August 2024, show that the highest 
levels of displacement risk are concentrated in 
specific regions. In Sudan, the Darfur region stands 
out, while Burkina Faso is also prominent. Parts of 
eastern Democratic Republic of the Congo (DRC) 
and the Lake Chad Basin also show elevated 
risk. These predictions closely match with actual 
displacement reported in the same month (Figure 25), 
demonstrating the model’s ability to identify high-risk 
areas well in advance.  

To further analyze the accuracy of the predictions, 
we calculate a range of performance metrics to 
understand where predictions are more, or less 
reliable. For the testing period from 2024 to 2025, 
we visualized the quality of our predictions by grid for 
the 3- and 6-months horizons in Figures 25 and 26. 
In these maps, the accuracy of predictions is colour 
coded in red, orange, and red, for high, medium, and 
low accuracy, respectively. Different shades of colours 

indicate displacement levels, with lighter colours 
corresponding to grids with lower displacement, 
darker colours to higher levels of displacement, and 
grids with dark colour and thick border representing 
areas of very high displacement, which are the most 
critical for humanitarian planning. 

The results show that the final model was able to 
accurately predict risk for high displacement areas 
such as eastern DRC, Burundi, and Eritrea where 
conflict and environmental stressors are major 
drivers of movement. Predictions in South Sudan 
were also largely accurate. We can also see that the 
model performs best in regions with concentrated 
displacement patterns, where multiple grids show 
similar levels of risk. Isolated high displacement areas 
are more difficult to predict, which is expected given 
the complex interactions of local drivers. The model 
is also correctly predicting areas of very low forced 
displacement, avoiding false positive warnings in 
those areas as can be seen in Table 3. 

Figure 26: Actual displacement levels for February 2025.



Figure 27: Average prediction quality by grid for horizon 3, 3 months into the future. Colour hue shows average 
precision-recall AUC; colour depth shows actual displacement levels
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Displacement level Accuracy level Number of grids

No displacement Low 0

Medium 0

High 5,320

Medium displacement Low 26

Medium 90

High 583

High displacement Low 8

Medium 45

High 149

Table 3: Grid accuracy level by displacement level over the testing period 2024-2025 for horizon 3. The accuracy 
is defined as the PR AUC, with 0-0.5, 0.5-0.7, 0.7-1, defined as low, medium and high accuracy respectively.

Overall, the forecasts demonstrate the final model’s 
ability to anticipate the three levels of displacement. 
Even though the highest displacement level can 
at times be challenging to predict, especially in 

isolated areas or in parts of Eastern Africa, it generally 
performs well in anticipating medium and high 
displacement risks up to six months in advance. 



Figure 28: Average prediction quality by grid for horizon 6, 6 months into the future. Colour hue shows average 
precision-recall AUC; colour depth shows actual displacement levels
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Figure 29 offers a zoomed-in view of the grid cells 
along the border between Northeast South Sudan 
and Southeast Sudan, coloured based on the actual 
displacement category and quality of prediction. This 
area has seen high levels of displacement, especially 
since the outbreak of the South Sudanese Civil War 
in late 2013, which lasted until 2020. Even though a 
peace deal was reached in 2020, escalating violence 
risks throwing the country back into civil war.67 Ethnic 
Dinka and Nuer communities border each other in 
this area and have suffered high levels of violence 
and unrest as the civil war is fought largely between 
these two ethnic groups.  

The majority of the dark green grid cells that have a 
bold border, those with high displacement, are green, 
meaning that the model more accurately predicts 

67 United Nations, “South Sudan at ‘Turning Point’ Amid Worsening Violence,” UN Press (August 18, 2025), https://press.un.org/
en/2025/sc16146.doc.htm

the high displacement grid cells. There are only a 
handful of bordered grid cells, those with high actual 
displacement, that are yellow or red, representing 
lower accuracy. The grid cells that are lighter coloured 
and not bordered which represent those with lower 
displacement levels are more mixed, meaning the 
model either accurately predicts low displacement or 
overpredicts it. 

By accommodating indirect pathways rather 
than drawing direct causal lines between climate 
conditions and displacement, the modelling 
assesses the influence of slow-onset climate events 
on displacement indirectly. Intermediate models 
convert raw data into indicators theoretically linked 
to displacement risk. Monthly population estimates 
indicate how many people are present in each grid 

https://press.un.org/en/2025/sc16146.doc.htm
https://press.un.org/en/2025/sc16146.doc.htm
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cell, offering insights into the levels of exposure and 
the potential scale of displacement when risk factors 
emerge. Food security is incorporated into the model 
as it is influenced by climate change and poor food 
security undermines livelihoods, potentially triggering 
population movements.

Drawing on population density and food security 
indicators—alongside data on climate, geography, 
demographics, well-being, governance, and conflict—
the final 0.5° grid models produced forecasts up to six 
months ahead. This fine spatial resolution, coupled 
with an ensemble of complementary methods, 
proved essential for capturing the nuanced interplay 
of environmental change, conflict, and economic 
shocks that shape displacement patterns across 
diverse contexts.

Taken together, the results highlight the value of 
integrating tree-based and deep-learning approaches 
to balance interpretability with the ability to detect 
subtle spatiotemporal dynamics. The high-resolution 
predictions generated through this framework 
provide not only an empirical basis for anticipating 
displacement but also a practical tool for directing 
humanitarian resources with greater precision. In 
doing so, the modelling approach offers a pathway 
for early action and risk reduction as climate-related 
pressures continue to intensify.

Figure 29: Average prediction accuracy across northern South Sudan and 
southern Sudan (6-month forecasts)
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CHAPTER 4:  
How data can inform 
humanitarian action 

4.1 the cost of slow-onset events
Voluntary returns to the places of origin are often 
the preferred solution to forced displacement 
once the threat from conflict, violence, or a rapid-
onset disaster disappears. However, slow-onset 
environmental degradation operates on timescales 

that exceed human life spans. The temperature 
increases documented in Chapter 2.1 represent 
changes that are not reversable on any timeline 
relevant to humanitarian planning. Therefore, 
the climatic changes described in this report 

© UNHCR/Eugene Sibomana
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establish new permanent baselines rather than 
temporary deviations which may make return a less 
viable option.

When environmental degradation catalyses conflict, 
as documented in the farmer-herder tensions 
across the Sahel,68 the underlying climatic drivers 
persist even after violence subsides. The Liptako-
Gourma region exemplifies this dynamic: even if the 
threat from extremist groups was eliminated, the 
degraded pastures and disrupted rainfall patterns 
that potentially contributed to the competition for 
resources would remain and create stressors that 
potentially lead to new tensions when populations 
return. The vegetation shifts shown in Figures 10 and 
11, particularly the phenological changes disrupting 
traditional agricultural calendars, represent ecological 
transformations that cannot be reversed through 
peace agreements alone.

This creates a fundamentally different displacement 
typology. Populations fleeing the impact of 
environmental stress and conflict cannot simply wait 
for “post-conflict” conditions because the resource 
base that previously supported their livelihoods will 
remain degraded even after the conflict has abated. 
Many of the millions of refugees that have fled from, 
among other areas, the Liptako-Gourma and Lake 
Chad regions, southwest Cameroon, South Sudan 
and Somalia since 2000 may face more permanent 
relocation, as the ecological foundation for both 
pastoralism and farming in their areas of origin 
continues to degrade.

Conflicts that emerge from elite political competition, 
military coups, or ideological movements, are 
often geographically contained and potentially 
resolvable through political settlements. The climate-
catalysed tensions documented in this report 
operate differently: they emerge from the bottom 
up as thousands of localized resource disputes.  
Individually, each dispute is too small to trigger 
international attention, but collectively all disputes are 
contributing to a reshaping of the continent’s stability 
map. The data revealed this transformation starkly. 

68 United Nations Office of the Special Coordinator for Development in the Sahel (OSCDS) and United Nations High 
Commissioner for Refugees (UNHCR). (2022). Moving from Reaction to Action - Anticipating Vulnerability Hotspots in 
the Sahel. 

69 Based on average annual populations from LandScan data between 2000 and 2024. 

Another important factor in understanding 
displacement is population size and growth rate. 
This project’s geography covers large regions, which 
have very low populations such as parts of the 
Sahara Desert and the Congo Basin Rainforest. Of 
the 6,225 grid cells, 497 have a population of 100 
or less.69 These low population grid cells have not 
yielded any displacement. Another important trend 
is the increasing population in the region, which has 
coincided with general displacement trends. Based 
on the LandScan annual population estimates for 
2020, the 1,777 grid cells that have experienced some 
displacement had an average population of 320,000 
compared to the grid cells that never experienced 
displacement, which had an average population 
of 90,000 in the same year. So, displacement has 
tended to occur in more populated grid cells on 
average. As discussed in Chapter 2.1, this project’s 
countries of focus have experienced high population 
growth. Overall, the grid cells that have experienced 
at least some displacement have an average annual 
population growth rate of 7.3 per cent between 
2001 and 2024. The average annual displacement 
change rate during this period was 142.8 per 
cent. As discussed above, there have been more 
displacement in recent years; of the 1,777 grid cells 
experiencing displacement, 47 per cent recorded 
their highest monthly displacement level since 2018, 
with 33 per cent recording the highest monthly 
level between 2021 and 2025. But the average 
annual growth rate among the grid cells which have 
experienced some displacement was 5.0 per cent 
prior to 2018 and 3.1 per cent since 2018, and 3.0 per 
cent since 2021. So, the increase in displacement 
does not seem fully a function of rapid population 
growth within these grid cells. 

As degraded areas expand, the number of potential 
flashpoints increases. Each failed growing season, 
each disrupted pastoral route, and each depleted 
water source represent not just local hardship but 
also potential displacement that then further strains 
receiving areas, potentially triggering secondary 
displacement as the host communities’ resilience 
erodes because of over population.
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The convergence of permanent environmental 
degradation with conflict and local tensions 
fundamentally challenges humanitarian operating 
assumptions. The traditional humanitarian 
cycle, emergency response, early recovery, and 
development, assumes an eventual return to stability. 
When slow-onset events drive displacement, this 
cycle breaks down. There is no “post-emergency” 
phase when temperatures will cool, or rainfall 
patterns will stabilise. There is no “early recovery” 
when degraded rangelands will restore themselves or 
aquifers will refill. 

In such a scenario, investment in resilience and 
prevention is critical. The seasonal patterns showing 
February-May peaks align with pre-planting periods 

when interventions could be most effective. Yet 
humanitarian funding remains predominantly reactive, 
with resources released only after displacement has 
commenced. 

The evidence presented throughout this report 
highlights that mitigating the impacts of slow-
onset environmental changes require short-term 
humanitarian support, but longer-term development 
funding is equally critical. This includes prioritizing 
prevention and anticipatory action. Some population 
movements are likely to be permanent and will 
require initiatives in hosting locations to minimize the 
need for people to move onwards.

4.2 How can humanitarian and development 
organizations use the model’s outputs 
The evidence from this project shows that slow-onset 
environmental changes are presenting increasing 
challenges in many locations within the study region, 
potentially driving social unrest, conflict and forced 
displacement. There are risks that the population 
movements may become more permanent. Given 
the longer time horizons over which these changes 
occur, shorter-term humanitarian support should 
be complemented by longer-term development 
support. The predictive model developed through this 
project (see Chapter 3), although not a standalone 
solution, provides such organizations with a tool 
to guide their operations. By providing risk levels 
at 1, 3, and 6-month intervals for 0.5° grid cells, 
the model transforms the patterns documented in 
this report into figures that can be incorporated in 
operational planning.

One-month prediction horizon

The one-month predictions serve traditional 
emergency responses whereby organizations 
can gain more precise geographic information for 
immediate preparedness. This allows agencies to 
identify specific 0.5 ° (55km2) grid cells from which 
the risk of displacement is highest and where 
displacement would exceed current operational 
thresholds. This would support pre-positioning 

emergency supplies, water treatment units, shelter 
materials, medical supplies, close to population 
centres in those 0.5° specific grid cells or along routes 
that lead from those grid cells. 

Three-month prediction horizon

The three-month timeframe allows organizations to 
establish and plan operations with a longer lead time.  
This could include negotiating access agreements 
with local authorities, recruiting and training local staff, 
and establishing local partnerships, including building 
their capacity to respond and support. A relevant 
scenario could be to plan food support activities in 
likely destination areas before a harvest, knowing 
that there is a high risk that the harvest would not 
be sufficient for the local population. This presents 
the opportunity to minimize the need for onwards 
movements, which then place additional pressure 
within the host locations.

Six-month prediction horizon

The six-month timeframe enables longer-term 
programming decisions. This can include the 
identification of areas where prevention still remains 
possible. Grid cells showing moderate but increasing 
risk might benefit from resilience investments, such 
as borehole rehabilitation, drought-resistant seed 
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distribution and conflict mediation programmes 
that would be much less viable after conflict and/or 
population movements have already commenced. 
An analysis of the risks in specific areas six months 
into the future can inform whether to prioritize 
programming that includes prevention in origin areas 
or integration support in destination areas. The 
longer timelines and evidence base produced from 
the outputs of this project can inform discussions 
with donors. 

Importantly, the model supplements rather than 
replaces existing assessment tools. Organizations 
should integrate model predictions with:

•	 Community feedback mechanisms or direct 
observations that validate the risk model 
generated within this project.

•	 Operational data and knowledge, including 
return intention surveys. This should include 
data from other relevant actors.

•	 Other analytical projects, e.g. those developed 
through inter-agency coordination efforts.

Updates to the model on a monthly basis enables 
adaptive management of situations. If 6-, and 3-month 
predictions prove accurate for certain regions but 

not others, organizations can adjust their confidence 
levels or the model parameters accordingly. This 
iterative learning improves both the utility of the 
model as well as the operational response.

Anticipating rather than reacting to forced 
displacement events will require operational 
adaptations. The outputs from the model will help 
to improve planning the release of funds, better 
ensuring the required budgets for responses are 
available. Field activities can be planned based on 
the predictions in addition to current needs, and 
indicators of successful interventions should include 
displacements that was prevented as well as those 
that have been assisted. The convergence of growing 
areas of permanent environmental degradation 
and increasing numbers of local-level conflicts and 
disputes, will likely lead to forced displacement 
levels rising over the longer term in the study region. 
Predictive tools such as the one presented here 
are likely to become much more widely used, with 
organizations cognizant of such tool limitations as 
well as recognizing the potential of the insights that 
can be derived from their use.

4.3 The path forward
The evidence presented throughout this report 
reveals that the impact of climate change is not 
uniform. As shown in Chapter 2, the western Sahel 
zone faces the risk of both increased drought and 
extremely high precipitation patterns, with different 
areas experiencing these issues to various degrees. 
Meanwhile, much of the Sahel shows improvement 
in several metrics such as an increase in vegetation, 
partly due to successful interventions such as farmer-
managed natural regeneration. The Horn of Africa 
exhibits a pattern of extreme variability, which creates 
cycles of drought and flooding that defy traditional 
seasonal patterns. These spatial variations require 
differentiated responses; rather than treating the 
entire region as equally vulnerable, responses should 
be calibrated to specific local conditions. 

Of the 6,225 grid cells in our study region, only 1,777 
have experienced forced displacement since 2000. 
Slow-onset climate-induced displacement is not an 
automatic consequence of environmental change 
but emerges when climate stress converge with 
other drivers such as weak governance, resource 
competition, and/or pre-existing conflict. The variation 
in levels of displacement could reflect differences 
in the environment, governance capacity, economic 
resources, social cohesion, and traditional adaptation 
mechanisms. Identifying the specific drivers enables 
targeted interventions where the risk of displacement 
is especially high.

This report documents an acceleration in 
displacement - 47 per cent of cells reaching peak 
displacement after 2018, the widening of the period 
within years during which forced displacement 
typically occurs and the growing geographic extent 
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of the displacement. Yet there is also an opportunity 
to apply the approach set out in this model to better 
assess, how, where and when to respond.

The output of the model supports a differentiated 
response and can be used to assess areas requiring 
an emergency response, areas where prevention 
remains possible, areas that require longer-term 
development support and areas that are successfully 
adapting without external support. In all cases, 
the model output also helps to assess when these 
responses would be required, including e.g. potential 
support in specific seasons if harvest are likely to be 
insufficient. 

These distinctions are made possible through 
systematic data analysis of the outputs of the 
predictive model developed through the CLIFDEW-
GRID project, which has the potential to transform 
these insights into operational data. By providing 
displacement risk level at 1-, 3-, and 6-month intervals 
for each 0.5° grid cell, the model outputs can guide 
humanitarian and development responses. The 
outputs include specific predictions on which cells 
face imminent risks, and when the displacement 
is most likely to occur. The outputs can be quickly 
refined to improve subsequent monthly updates. 
Organizations using the model outputs can help 
refine the accuracy of the predictions through 
ground truthing during planning phases and while 
responding. The model itself attempts also to improve 
the accuracy of the outputs by learning from each 
cycle. The model outputs are certainly not perfect but 
are grounded with remote sensing data and other 
reliable sources.

CLIFDEW-GRID enables humanitarian and 
development organizations to optimise how they 
utilise their resources in order to better address the 
challenges presented throughout this report. For cells 
showing high risks within one month, organizations 
can pre-position emergency supplies in predicted 
destination areas. Three-month predictions allow 
the establishment of operational infrastructure—
partnerships, personnel recruitment and organizing 
coordination mechanisms—before displacement 
occurs. The six-month outlooks help to identify where 
investment in prevention might mitigate the need 
for people to move onwards or that the investment 
would be more effective in likely areas of destination. 
By identifying cells with the highest displacement 

risk, the model highlights where prevention remains 
possible, and by showing sustained risk in origin 
areas, it indicates where to best target assistance. 
Through using this tool, organizations need no longer 
wait for displacement to occur and can instead 
anticipate when and where to respond and plan the 
most effective approach.

Climate change will continue reshaping Africa’s 
environmental landscape. Temperatures will 
continue to rise, rainfall patterns will shift, and 
environmental stresses will intensify in many areas. 
But as the CLIFFDEW-GRID model outputs show, 
displacement is not an inevitable consequence. The 
tool helps to identify those areas with high risks of 
forced displacement, informing less reactive, more 
anticipatory responses. As displacement patterns 
grow more complex and widespread, driven in part 
through climate change, tools that transform data into 
foresight will become increasingly essential to protect 
and support vulnerable populations.
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